【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否在犯錯誤的概率不超過的前提下認(rèn)為"體育迷"與性別有關(guān).

性別

非體育迷

體育迷

總計

10

55

總計

下面的臨界值表供參考:

015

010

005

025

0010

0005

0001

k

2072

2706

3841

5024

6635

7879

10828

(參考公式:,其中)

2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列期望和方差

【答案】12×2列聯(lián)表答案見解析, 在犯錯誤的概率不超過的前提下認(rèn)為“體育迷”與性別有關(guān).

2)分布列見解析,,

【解析】

1)先根據(jù)頻率分布直方圖計算出“體育迷”的人數(shù),結(jié)合2×2列聯(lián)表中的數(shù)據(jù)可得表中其他數(shù)據(jù),最后根據(jù)公式計算出的觀測值,再依據(jù)臨界值表給出判斷.

2)利用二項分布可得分布列,再利用公式可求期望和方差.

1)由頻率分布直方圖可知,在抽取的100人中“體育迷”有(人).由獨(dú)立性檢驗的知識得2×2列聯(lián)表如下:

性別

非體育迷

體育迷

總計

30

15

45

45

10

55

總計

75

25

100

2×2列聯(lián)表中的數(shù)據(jù)代入公式計算,

的觀測值.所以在犯錯誤的概率不超過的前提下認(rèn)為“體育迷”與性別有關(guān).

2)由頻率分布直方圖知抽到“體育迷”的頻率為,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率為

由題意知,∴,

從而X的分布列為:

0

1

2

3

由二項分布的期望與方差公式得,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年一種新奇水果深受廣大消費(fèi)者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟(jì)效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:

x

1

3

4

6

7

y

5

65

7

75

8

yx可用回歸方程 其中為常數(shù))進(jìn)行模擬.

(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150/箱,試預(yù)測該新奇水果100箱的利潤是多少元.|

(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)16天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.

i)若從箱數(shù)在內(nèi)的天數(shù)中隨機(jī)抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;

(ⅱ)求這16天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點(diǎn)值作代表)

參考數(shù)據(jù)與公式:設(shè),則

0.54

6.8

1.53

0.45

線性回歸直線中,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有位學(xué)生申請、三所大學(xué)的自主招生.若每位學(xué)生只能申請其中一所大學(xué),且申請其中任何一所大學(xué)是等可能的.

1)求恰有人申請大學(xué)的概率;

2)求被申請大學(xué)的個數(shù)的概率分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記. 由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗. 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經(jīng)營戶,普查情況如下表所示:

普查對象類別

順利

不順利

合計

企事業(yè)單位

40

10

50

個體經(jīng)營戶

100

50

150

合計

140

60

200

(1)寫出選擇 5 個國家綜合試點(diǎn)地區(qū)采用的抽樣方法;

(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;

(3)以頻率作為概率, 某普查小組從該小區(qū)隨機(jī)選擇 1 家企事業(yè)單位,3 家個體經(jīng)營戶作為普查對象,入戶登記順利的對象數(shù)記為, 寫出的分布列,并求的期望值.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過點(diǎn)A的動直線lE相交于PQ兩點(diǎn).當(dāng)OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)g(x)=f(1-x)-kx+k-恰有三個不同的零點(diǎn),則k的取值范圍是(  )

A. (-2-,0]∪ B. (-2+,0]∪

C. (-2-,0]∪ D. (-2+,0]∪

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分15分)已知點(diǎn)是圓上任意一點(diǎn),過點(diǎn)軸的垂線,垂足為,點(diǎn)滿足 記點(diǎn)的軌跡為曲線

)求曲線的方程;

)設(shè),點(diǎn)在曲線上,且直線與直線的斜率之積為,求的面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為直角梯形,,平面,,.

1)求證:平面

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上點(diǎn)處的切線方程為

求拋物線的方程;

設(shè)為拋物線上的兩個動點(diǎn),其中,線段的垂直平分線軸交于點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案