利用三角函數(shù)線,寫(xiě)出滿足下列條件的角x的集合:
(1)sinx>-
1
2
且cosx>
1
2
;
(2)tanx≥-1.
考點(diǎn):正切函數(shù)的單調(diào)性
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:作出單位圓,根據(jù)正弦線,余弦線以及正切線,即可得到結(jié)論.
解答: 解:(1)作出單位圓,則同時(shí)滿足sinx>-
1
2
且cosx>
1
2
的區(qū)域部分為陰影部分,此時(shí)在[0,2π]內(nèi)滿足條件的角x∈[0,
π
3
],
則滿足sinx>-
1
2
且cosx>
1
2
的角x的集合為{x|2kπ≤x≤2kπ+
π
3
}=[2kπ,2kπ+
π
3
],k∈Z.
(2)如圖①所示,過(guò)點(diǎn)(1,-1)和原點(diǎn)作直線交單位圓于P和P′,
則射線OP、OP′就是滿足tanα=-1的角α的終邊
∵在[0,2π)內(nèi),滿足條件的∠POx=π-
π
4
=
4
,
∠P′Ox=-
π
4

∴滿足條件tanα=-1的角α的集合是{x|x=-
π
4
+kπ,k∈Z},
則滿足tanx≥-1的角α的集合是{x|-
π
4
+kπ≤x<
π
2
+kπ,k∈Z}.
點(diǎn)評(píng):本題給出滿足條件的角,要求利用單位圓找出角α的集合.著重考查了單位圓中的三角函數(shù)線、終邊相同角的集合等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1
-1
(x2+
4-x2
)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x+1)2,若存在實(shí)數(shù)a,使得f(x+a)≤2x-4對(duì)任意的x∈[2,t]恒成立,則實(shí)數(shù)t的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,求證:函數(shù)y=f(x)在區(qū)間[-b,-a]上單調(diào)遞減.若是奇函數(shù),又有怎么樣的結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx-
1
2
x(x∈[0,π]),那么下列結(jié)論正確的是( 。
A、f(x)在[0,
π
2
]上是增函數(shù)
B、f(x)在[
π
6
,π]上是減函數(shù)
C、?x∈[0,π],f(x)>f(
π
3
)
D、?x∈[0,π],f(x)≤f(
π
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:x2+y2+2x+6y+6=0,圓C2:x2+y2-4x-8y+7=0,求兩圓的圓心距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)對(duì)于任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時(shí)f(x)<0恒成立.
(1)證明函數(shù)f(x)的奇偶性;
(2)若f(1)=-2,求函數(shù)f(x)在[-2,2]上的最大值;
(3)解關(guān)于x的不等式
1
2
f(-2x2)-f(x)>
1
2
f(4x)-f(-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為BC1的中點(diǎn),則DE與面BCC1B1所成角的正切值為( 。
A、
6
2
B、
6
2
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在(-1,1)上有定義,且f(
1
5
)=
1
2
.對(duì)任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
),當(dāng)且僅當(dāng)-1<x<0時(shí),f(x)>0.
(1)判斷f(x)在(-1,1)上的奇偶性,并說(shuō)明理由;
(2)判斷f(x)在(0,1)上的單調(diào)性,并說(shuō)明理由;
(3)試求f(
1
2
)-f(
1
11
)-f(
1
19
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案