17.a(chǎn),b是不等的兩正數(shù),若$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-^{n+1}}{{a}^{n}+^{n}}$=2,則b的取值范圍是(0,2).

分析 當(dāng)a>b時(shí),$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-^{n+1}}{{a}^{n}+^{n}}$=$\underset{lim}{n→∞}$$\frac{a-b•(\frac{a})^n}{1+(\frac{a})^n}$=a,進(jìn)而求出b的范圍.

解答 解:a,b是不等的兩正數(shù),且$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-^{n+1}}{{a}^{n}+^{n}}$=2,
須對(duì)a,b作如下討論:
①當(dāng)a>b時(shí),$\underset{lim}{n→∞}$$(\frac{a})^n$=0,則$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-^{n+1}}{{a}^{n}+^{n}}$=$\underset{lim}{n→∞}$$\frac{a-b•(\frac{a})^n}{1+(\frac{a})^n}$=a,
所以,a=2,因此,b∈(0,2),
②當(dāng)a<b時(shí),則$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-^{n+1}}{{a}^{n}+^{n}}$=-b=2,
而b>0,故不合題意,舍去.
綜合以上討論得,b∈(0,2),
故答案為:(0,2).

點(diǎn)評(píng) 本題主要考查了極限及其運(yùn)算,以及應(yīng)用常用極限|q|<1,$\underset{lim}{n→∞}$qn=0解題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=asinx+btanx+x2滿足f(-3)=-3,則f(3)=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求極限:$\underset{lim}{x→a}$$\frac{x}{x-a}$${∫}_{a}^{x}$f(t)dt,其中f(x)連續(xù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知實(shí)數(shù)列{an}滿足|a1|=1,|an+1|=q|an|,n∈N+,常數(shù)q>1.對(duì)任意的n∈N+,有$\sum_{k=1}^{n+1}{|{a_k}|}≤4|{a_n}|$.設(shè)C為所有滿足上述條件的數(shù)列{an}的集合.
(1)求q的值;
(2)設(shè){an},{bn}∈C,m∈N+,且存在n0≤m,使${a_{n_0}}≠{b_{n_0}}$.證明:$\sum_{k=1}^m{|{a_k}|}≠\sum_{k=1}^m{|{b_k}|}$;
(3)設(shè)集合${A_m}=\left\{{\sum_{k=1}^m{a_k}\left|{\left\{{a_n}\right\}∈C}\right.}\right\}$,m∈N+,求Am中所有正數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線3x-4y+4=0與6x+my+n=0是一個(gè)面積為4π的圓的兩條平行切線,則m,n的值可能為( 。
A.-8,48B.8,-36C.-8,-48D.8,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積等于(  )
A.8+4πB.8+2πC.8+$\frac{4}{3}$πD.8+$\frac{2}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線l∥平面α,m為平面α內(nèi)任一直線,則直線l與直線m的位置關(guān)系是( 。
A.平行B.異面C.相交D.平行或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某學(xué)校一個(gè)生物興趣小組對(duì)學(xué)校的人工湖中養(yǎng)殖的某種魚類進(jìn)行觀測(cè)研究,在飼料充足的前提下,興趣小組對(duì)飼養(yǎng)時(shí)間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測(cè)值,如下表:
(1)在給出的坐標(biāo)系中,畫出關(guān)于x、y兩個(gè)相關(guān)變量的散點(diǎn)圖.
xi(月)12345
yi(千克)0.50.91.72.12.8
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關(guān)于變量x的線性回歸直線方程$\hat y=\widehatbx+\hat a$.
(3)預(yù)測(cè)飼養(yǎng)滿12個(gè)月時(shí),這種魚的平均體重(單位:千克).
(參考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{({\overline x})}^2}}}\hat$,$\hat a=\overline y-b\overline x$,$n{(\overline x)^2}=45$,$n\overline x\overline y=24$,$\sum_{i=1}^5{x_i}{y_i}=29.8$,$\sum_{i=1}^5{x_i^2}=55$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,ABCD是正方形,CC1⊥平面ABCD,且DD1∥BB1∥CC1,菱形AB1C1D1中,∠D1C1B1=α.
(1)求證:BD∥平面AB1C1D1
(2)若直線AC1與平面ABCD所成的角為θ,求證:cosθ=tan$\frac{α}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案