已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ)求證:,e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(Ⅱ)實(shí)數(shù)a的取值范圍是;(Ⅲ)詳見(jiàn)解析.

試題分析:(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間,即判斷在各個(gè)區(qū)間上的符號(hào),只需對(duì)求導(dǎo)即可;(Ⅱ)當(dāng)時(shí),不等式恒成立,即恒成立,令 (),只需求出最大值,讓最大值小于等于零即可,可利用導(dǎo)數(shù)求最值,從而求出的取值范圍;(Ⅲ)要證成立,即證,即證,由(Ⅱ)可知當(dāng)時(shí),上恒成立,又因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/201408240217509421025.png" style="vertical-align:middle;" />,從而證出.
試題解析:(Ⅰ)當(dāng)時(shí),),),
解得,由解得,故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
(Ⅱ)因當(dāng)時(shí),不等式恒成立,即恒成立,設(shè) (),只需即可.由,
(。┊(dāng)時(shí),,當(dāng)時(shí),,函數(shù)上單調(diào)遞減,故 成立;
(ⅱ)當(dāng)時(shí),由,因,所以,①若,即時(shí),在區(qū)間上,,則函數(shù)上單調(diào)遞增, 上無(wú)最大值(或:當(dāng)時(shí),),此時(shí)不滿足條件;②若,即時(shí),函數(shù)上單調(diào)遞減,在區(qū)間上單調(diào)遞增,同樣 在上無(wú)最大值,不滿足條件 ;
(ⅲ)當(dāng)時(shí),由,∵,∴,
,故函數(shù)上單調(diào)遞減,故成立.
綜上所述,實(shí)數(shù)a的取值范圍是
(Ⅲ)據(jù)(Ⅱ)知當(dāng)時(shí),上恒成立,又,
 
 ,∴
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知a>0,函數(shù).
(1)若,求函數(shù)的極值,
(2)是否存在實(shí)數(shù),使得成立?若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)若函數(shù)沒(méi)有零點(diǎn),求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=2時(shí),求證:1-<2ln(x-1)<2x-4(x>2);
(Ⅲ)求證:+…+<lnn<1++ +(n∈N*,且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)若的極值點(diǎn),求實(shí)數(shù)的值;
(2)若上為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù),為常數(shù))
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)定義在R上的奇函數(shù),當(dāng)時(shí),,給出下列命題:
①當(dāng)時(shí),           ②函數(shù)有2個(gè)零點(diǎn)
的解集為       ④,都有
其中正確命題個(gè)數(shù)是(      )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,對(duì)于任意的
 ,函數(shù)在區(qū)間 上總不是單調(diào)函數(shù),
求實(shí)數(shù)的取值范圍;
(3)求證 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),其導(dǎo)函數(shù)記為,則          .

查看答案和解析>>

同步練習(xí)冊(cè)答案