已知為直角三角形,三邊長分別為,其中斜邊AB=,若點在直線上運動,則的最小值為              
4

試題分析:由題意,的幾何意義是原點(0,0)與P(m,n)兩點間距離的平方,
要使的值最小,則點P為原點O(0,0)在直線上的射影,故,∵a、b、c為某一直角三角形的三條邊長,c為斜邊,∴
由點到直線間的距離公式得:|PO|=,∴
點評:此類問題解題的關(guān)鍵是理解點到直線的距離公式,突出轉(zhuǎn)化意識,屬中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線 y2 =" 4x" 的焦點作直線交拋物線于A(x1, y1)B(x2, y2)兩點,如果=6,那么           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的左、右焦點分別為F1、F2,過點 F1作傾斜角為30°的直線l,l與雙曲線的右支交于點P,若線段PF1的中點M落在y軸上,則雙曲線的漸近線方程為                                                      (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在橢圓+上,為焦點 且,則的面積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,的兩個頂點、的坐標(biāo)分別是(-1,0),(1,0),點的重心,軸上一點滿足,且.
(1)求的頂點的軌跡的方程;
(2)不過點的直線與軌跡交于不同的兩點,當(dāng)時,求的關(guān)系,并證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)已知橢圓=1(a>b>0)的一個焦點是圓x2+y2-6x+8=0的圓心,且短軸長為8,則橢圓的左頂點為(   )
A.(-3,0)B.(-4,0)C.(-10,0)D.(-5,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù)(其中為常數(shù))的圖像經(jīng)過點A、B是函數(shù)圖像上的點,正半軸上的點.
(1) 求的解析式;
(2) 設(shè)為坐標(biāo)原點,是一系列正三角形,記它們的邊長是,求數(shù)列的通項公式;
(3) 在(2)的條件下,數(shù)列滿足,記的前項和為,證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

我國發(fā)射的“神舟七號”飛船的運行軌道是以地球的中心為一個焦點的橢圓,近地點A距地面為千米,遠地點B距地面為千米,地球半徑為千米,則飛船運行軌道的短軸長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,為橢圓的四個頂點,F(xiàn)為其右焦點,直線與直線B1F相交于點T,線段OT與橢圓的交點M恰為線段OT的中點,則該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案