20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{2}^{x}+2,x≤1}\\{\frac{1}{2}x-\frac{1}{2},x>1}\end{array}\right.$,若存在實數(shù)x1<x2,使得f(x1)=f(x2),則x2f(x1)的取值范圍是(0,10).

分析 作出函數(shù)f(x)的圖象,得到1<x2<5.將x2f(x1)轉(zhuǎn)化為x2f(x2),利用一元二次函數(shù)的單調(diào)性的性質(zhì)進行求解即可.

解答 解:當x≤1時,f(x)=-2x+2∈(0,2],
由$\frac{1}{2}$x-$\frac{1}{2}$=2得$\frac{1}{2}$x=$\frac{5}{2}$,得x=5,
若存在實數(shù)x1<x2,使得f(x1)=f(x2),
則1<x2<5.
則x2f(x1)=x2f(x2)=x2($\frac{1}{2}$x2-$\frac{1}{2}$)
=$\frac{1}{2}$(x22-$\frac{1}{2}$)2-$\frac{1}{8}$,
則函數(shù)在1<x2<5上為增函數(shù),
當x2=1時,$\frac{1}{2}$(x22-$\frac{1}{2}$)2-$\frac{1}{8}$=0,
當x2=5時,$\frac{1}{2}$(x22-$\frac{1}{2}$)2-$\frac{1}{8}$=10,
即0<x2f(x1)<10,
即x2f(x1)的范圍是(0,10),
故答案為:(0,10)

點評 本題主要考查分段函數(shù)的應(yīng)用,根據(jù)條件將問題轉(zhuǎn)化為一元二次函數(shù)是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,$CD=2AB=2BP=\sqrt{2}AD$,$\overrightarrow{CE}=λ\overrightarrow{EB}$(λ>0),DE⊥平面PBC,側(cè)面ABP⊥底面ABCD
(1)求λ的值;
(2)求直線CD與面PDE所成角θ的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=$\frac{x}{{e}^{2x}}$+1的最大值為$\frac{1}{2e}+1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知高與底面半徑相等的圓錐的體積為$\frac{8π}{3}$,其側(cè)面積與球O的表面積相等,則球O的體積為$\frac{{4\root{4}{8}π}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=|2x-a|+|2x+3|,g(x)=1+$\sqrt{2x-{x^2}}$.
(Ⅰ)若a=1時,解不等式:|2x-a|+|2x+3|≤6;
(Ⅱ)若對任意x1∈[0,2],都存在x2∈R,使得g(x1)=f(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.根據(jù)國家最新人口發(fā)展戰(zhàn)略,一對夫婦可生育兩個孩子,為了解人們對放開生育二胎政策的意向,某機構(gòu)在A城市隨機調(diào)查了100位30到40歲已婚人群,得到情況如表:
意向合計
402060
不生202040
合計6040100
(Ⅰ)是否有95%以上的把握認為“生二胎與性別有關(guān)”,并說明理由(請參考所附的公式及相關(guān)數(shù)據(jù));
(Ⅱ)從這60名男性中按對生育二胎政策的意向采取分層抽樣,抽取6名男性,從這6名男性中隨機選取兩名,求選到的兩名都愿意生育二胎的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若f(x)=$\left\{{\begin{array}{l}{{a^x},x<0}\\{{{log}_a}x,x>0}\end{array}}$,那么y=f(x)-a的零點個數(shù)有( 。
A.0個B.1個
C.2個D.a的值不同時零點的個數(shù)不同

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知向量$\overrightarrow m$=(cosx,-1),$\overrightarrow n$=($\sqrt{3}$sinx,-$\frac{1}{2}$),設(shè)函數(shù)f(x)=($\overrightarrow m$+$\overrightarrow n$)•$\overrightarrow m$.
(1)求函數(shù)f(x)的最小正周期;
(2)當x∈[0,$\frac{π}{2}$]時,求f(x)的最大值,并指出此時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.隨機變量X的分布列如下:若E(X)=$\frac{15}{8}$,則D(X)等于( 。
X123
P0.5xy
A.$\frac{7}{32}$B.$\frac{9}{32}$C.$\frac{33}{64}$D.$\frac{55}{64}$

查看答案和解析>>

同步練習冊答案