18.如圖,位于A處前方有兩個觀察站B,D,且△ABD為邊長等于3km的正三角形,當(dāng)發(fā)現(xiàn)目標(biāo)出現(xiàn)于C處時,測得∠BDC=45°,∠CBD=75°,則AC=( 。
A.15-6$\sqrt{3}$kmB.15+6$\sqrt{3}$kmC.$\sqrt{15+6\sqrt{3}}$kmD.$\sqrt{15-6\sqrt{3}}$km

分析 先利用正弦定理,求出DC,再用余弦定理,求出AC.

解答 解:由題意,∠BCD=60°,∴$\frac{3}{sin60°}$=$\frac{DC}{sin75°}$,
∴DC=$\frac{1}{2}$(3$\sqrt{2}$+$\sqrt{6}$),
∵∠CDA=105°,
∴AC=$\sqrt{(\frac{3\sqrt{2}+\sqrt{6}}{2})^{2}+9-2•\frac{3\sqrt{2}+\sqrt{6}}{2}•3•(-\frac{\sqrt{6}+\sqrt{2}}{4})}$=$\sqrt{15+6\sqrt{3}}$,
故選C.

點評 本題考查正弦、余弦定理的運用,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.有一組數(shù)據(jù):
x81213a18
y108674
已知y對x呈線性相關(guān)關(guān)系為:$\hat y=13.5-0.5x$,則a的值為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點M(a,b)在直線3x+4y-15=0上,則$\sqrt{(a-1)^{2}+(b+2)^{2}}$的最小值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3+x2(a∈R)在x=-$\frac{4}{3}$處取得極值.
(1)確定a的值和f(x)的極值;
(2)若g(x)=f(x)ex,討論g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.柜子里有3雙不同的鞋,隨機地取2只,下列敘述錯誤的是( 。
A.取出的鞋不成對的概率是$\frac{4}{5}$
B.取出的鞋都是左腳的概率是$\frac{1}{5}$
C.取出的鞋都是同一只腳的概率是$\frac{2}{5}$
D.取出的鞋一只是左腳的,一只是右腳的,但它們不成對的概率是$\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有$f[{f(x)+{{log}_{\frac{1}{3}}}x}]=4$,且方程|f(x)-3|=x3-6x2+9x-4+a在區(qū)間(0,3]上有兩解,則實數(shù)a的取值范圍是( 。
A.0<a≤5B.a<5C.0<a<5D.a≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若多項式${x^2}+{x^{11}}={a_0}+{a_1}(x+1)+…{a_{10}}{(x+1)^{10}}+{a_{11}}{(x+1)^{11}}$,則a10=-11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C的圓心C在x軸上,且圓C與直線$x+\sqrt{3}y+n=0$相切于點$({\frac{3}{2},\frac{{\sqrt{3}}}{2}})$.
(1)求n的值及圓C的方程;
(2)若圓M:${x^2}+{({y-\sqrt{15}})^2}={r^2}({r>0})$與圓C相切,求直線$\sqrt{3}x-\sqrt{2}y=0$截圓M所得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={-2,0,2},B={x|x2-2x-3≤0},則A∩B=(  )
A.{0}B.{2}C.{0,2}D.{-2,0}

查看答案和解析>>

同步練習(xí)冊答案