已知函數(shù)f(x)=x3-2ax2+bx+c.
(Ⅰ)當(dāng)c=0時,f(x)的圖象在點(1,3)處的切線平行于直線y=x+2,求a,b的值;
(Ⅱ)當(dāng)a=
3
2
,b=-9
時,f(x)在點A,B處有極值,O為坐標(biāo)原點,若A,B,O三點共線,求c的值.
(Ⅰ)當(dāng)c=0時,f(x)=x3-2ax2+bx.
則f'(x)=3x2-4ax+b
由于f(x)的圖象在點(1,3)處的切線平行于直線y=x+2,
可得f(1)=3,f'(1)=1,
3-4a+b=1
1-2a+b=3

解得
a=2
b=6.
;
(Ⅱ)當(dāng)a=
3
2
,b=-9
時,f(x)=x3-3x2-9x+c.
所以f'(x)=3x2-6x-9=3(x-3)(x+1)
令f'(x)=0,解得x1=3,x2=-1.
當(dāng)x變化時,f'(x),f(x)變化情況如下表:
x(-∞,-1)-1(-1,3)3(3,+∞)
f'(x)+0-0+
f(x)5+c-27+c
所以當(dāng)x=-1時,f(x)極大值=5+c;當(dāng)x=3時,f(x)極小值=-27+c.
不妨設(shè)A(-1,5+c),B(3,-27+c)
因為A,B,O三點共線,所以kOA=kOB
5+c
-1
=
-27+c
3
,解得c=3.
故所求c值為3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)=x3-6bx+3b在(0,1)內(nèi)只有極小值,則實數(shù)b的取值范圍是( 。
A.(0,1)B.(-∞,1)C.(0,+∞)D.(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線y=
x2
4
-3lnx
的一條切線的斜率為
5
4
,則切點的橫坐標(biāo)為( 。
A.1B.-
3
2
C.4D.4或-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點P是曲線y=x2-lnx上任意一點,則點P到直線x-y-4=0的距離的最小值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=-1+3x-x3有( 。
A.極小值為-2,極大值為0
B.極小值為-3,極大值為-1
C.極小值為-3,極大值為1
D.極小值為3,極大值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)曲線f(x)=
1
3
x3-
a
2
x2+1
(其中a>0)在點(x1,f(x1))及(x2,f(x2))處的切線都過點(0,2).證明:當(dāng)x1≠x2時,f′(x1)≠f′(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3-x2-3x在x1、x2處分別取得極大值和極小值,記點M(x1,f(x1))N(x2,f(x2)).
(1)求x1,x2的值;
(2)證明:線段MN與曲線f(x)存在異于M、N的公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某同學(xué)對教材《選修2-2》上所研究函數(shù)f(x)=
1
3
x3-4x+4的性質(zhì)進(jìn)行變式研究,并結(jié)合TI-Nspire圖形計算器作圖進(jìn)行直觀驗證(如圖所示),根據(jù)你所學(xué)的知識,指出下列錯誤的結(jié)論是(  )
A.f(x)的極大值為f(-2)=
28
3
B.f(x)的極小值為f(2)=-
4
3
C.f(x)的單調(diào)遞減區(qū)間為(-2,2)
D.f(x)在區(qū)間[-3,3]上的最大值為f(-3)=7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=ex+1在點A(0,1)處的切線斜率為( 。
A.1B.2C.eD.
1
e

查看答案和解析>>

同步練習(xí)冊答案