【題目】已知一個袋中裝有大小相同的4個紅球,3個白球,3個黃球.若任意取出2個球,則取出的2個球顏色相同的概率是;若有放回地任意取10次,每次取出一個球,每取到一個紅球得2分,取到其它球不得分,則得分數(shù)X的方差為

【答案】;9.6
【解析】解:一個袋中裝有大小相同的4個紅球,3個白球,3個黃球. 任意取出2個球,基本事件總數(shù)n= =45,
取出的2個球顏色相同包含的基本事件個數(shù)m= =12,
∴取出的2個球顏色相同的概率是p=
∵有放回地任意取10次,每次取出一個球,每取到一個紅球得2分,取到其它球不得分,
∴取到紅球的個數(shù)ξ~B(0.4,10),
∴D(ξ)=10×0.4×0.6=2.4,
∵X=2ξ,
∴D(X)=4E(ξ)=4×2.4=9.6.
所以答案是: ,9.6.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(3)對一切的x,2f(x)≤g′(x)+2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=x2+bx﹣1(b∈R).
(1)若函數(shù)y=f(x)在[1,+∞)上單調(diào),求b的取值范圍;
(2)若函數(shù)y=|f(x)|﹣2有四個零點,求b的取值范圍;
(3)若函數(shù)y=|f(x)|在[0,|b|)上的最大值為g(b),求g(b)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x3+3ax2+bx+a2(a>1)在x=﹣1時有極值0.
(1)求常數(shù) a,b的值;
(2)方程f(x)=c在區(qū)間[﹣4,0]上有三個不同的實根時,求實數(shù)c的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的減函數(shù),其導函數(shù)f′(x)滿足 +x<1,則下列結論正確的是(
A.對于任意x∈R,f(x)<0
B.對于任意x∈R,f(x)>0
C.當且僅當x∈(﹣∞,1),f(x)<0
D.當且僅當x∈(1,+∞),f(x)>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xex+ax2+2x+1在x=﹣1處取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)﹣m﹣1在[﹣2,2]上恰有兩個不同的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ ,其中a為大于零的常數(shù)..
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值;
(3)求證:對于任意的n∈N* , 且n>1時,都有l(wèi)nn> + +…+ 成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平行四邊形ABCD的三個頂點的坐標為A(﹣1,5),B(﹣2,﹣1),C(2,3).

(1)求平行四邊形ABCD的頂點D的坐標;
(2)在△ACD中,求CD邊上的高所在直線方程;
(3)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程是

)如果圓與直線沒有公共點,求實數(shù)的取值范圍;

)如果圓過坐標原點,過點直線與圓交于 兩點,記直線的斜率的平方為,對于每一個確定的,當的面積最大時,用含的代數(shù)式表示,并求的最大值.

查看答案和解析>>

同步練習冊答案