分析 設(shè)晚報(bào)被送到的時(shí)間為下午x時(shí),小明家晚餐開始的時(shí)間為下午y時(shí),(x,y)可以看成平面中的點(diǎn),試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)棣?{(x,y)|4.5≤x≤6.5,6≤y≤7}一個(gè)長(zhǎng)方形區(qū)域,求出其面積,事件A表示小明晚餐前不能被送到,所構(gòu)成的區(qū)域?yàn)锳={(x,y)|4.5≤x≤6.5,6≤y≤7,x<y} 求出其面積,根據(jù)幾何概型的概率公式解之即可.
解答 解:顯然:事件“晚報(bào)在晚餐之前被送到”的概率是屬于“幾何概型”.
設(shè)晚報(bào)被送到的時(shí)間為下午x時(shí),小明家晚餐開始的時(shí)間為下午y時(shí),
則:$\left\{\begin{array}{l}{4.5≤x≤6.5}\\{6≤y≤7}\end{array}\right.$,其面積為2,
又事件“晚報(bào)在晚餐之前被送到”即為:x<y,滿足$\left\{\begin{array}{l}{4.5≤x≤6.5}\\{6≤y≤7}\end{array}\right.$的面積為2-$\frac{1}{2}×\frac{1}{2}×\frac{1}{2}$=$\frac{15}{8}$
設(shè)事件A表示:“晚報(bào)在晚餐之前被送到”,則:P(A)=$\frac{15}{16}$.
故答案為$\frac{15}{16}$.
點(diǎn)評(píng) 本題主要考查了幾何概型,同時(shí)考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化的思想,以及計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2+$\sqrt{2}+\sqrt{6}$ | B. | 4+2$\sqrt{2}$+2$\sqrt{6}$ | C. | 2+2$\sqrt{2}$+2$\sqrt{3}$ | D. | 4+4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{5}$ | D. | $\frac{9}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2,3,4 | B. | 3,4,5 | C. | 4,5,6 | D. | 不存在 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com