已知橢圓C:(a>b>0)的離心率為短軸一個端點(diǎn)到右焦點(diǎn)的距離為. (Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值

 

【答案】

(Ⅰ)設(shè)橢圓的半焦距為,依題意   …………2分

,所求橢圓方程為.            …………4分

(Ⅱ)設(shè)

(1)當(dāng)軸時(shí),.               ……5分

(2)當(dāng)軸不垂直時(shí),設(shè)直線的方程為

由已知,得

代入橢圓方程,整理得,   ………6

,.                            ……7分

               ………8分

.   ………9分

當(dāng)且僅當(dāng),即時(shí)等號成立.當(dāng)時(shí),,   …10分

綜上所述

當(dāng)最大時(shí),面積取最大值

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:=1(a>b>0),直線l1:=1被橢圓C截得的弦長為2,過橢圓C的右焦點(diǎn)且斜率為3的直線l2被橢圓C截得的弦長是橢圓長軸長的,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的一個頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題

已知橢圓C:+=1(a>b>0)的左焦點(diǎn)為F,C與過原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF,BF.|AB|=10,|BF|=8,cosABF=,C的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省高三8月第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)

已知橢圓C:(a>b>0)的離心率為,短軸一個端點(diǎn)到右焦點(diǎn)的距離為3.

(1)求橢圓C的方程;

(2)過橢圓C上的動點(diǎn)P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點(diǎn),試探究橢圓C上是否存在點(diǎn)P,由點(diǎn)P向圓O所引的兩條切線互相垂直?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省高二上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題

(本小題滿分12分)

已知橢圓C:(a>b>0)的離心率為短軸一個端點(diǎn)到右焦點(diǎn)的

距離為.

(Ⅰ)求橢圓C的方程;    

(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的

最大值.

 

查看答案和解析>>

同步練習(xí)冊答案