扇形的半徑是
6
,圓心角是60°,則該扇形的面積為
 
考點:扇形面積公式
專題:三角函數(shù)的求值
分析:利用扇形的面積計算公式即可得出.
解答: 解:∵60°=
π
3
弧度,
∴該扇形的面積=
1
2
αr2
=
1
2
×
π
3
×(
6
)2
=π.
故答案為:π.
點評:本題考查了扇形的面積計算公式和弧長公式,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知公差為2的等差數(shù)列{an}的前n項和為Sn,a1=a,若存在常數(shù)c使得數(shù)列{
Sn+c
}也為等差數(shù)列,則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

向量
OA
=(cosa,sina),向量
OB
=(2+sina,2-cosa),則向量|
AB
|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的各項均為正數(shù),前n項和為Sn,對于任意的n∈N+,an,Sn,an2成等差數(shù)列,設(shè)數(shù)列{bn}的前n項和為Tn,且bn=
(lnx)n
an2
,若對任意的實數(shù)x∈(1,e](e是自然對數(shù)的底)和任意正整數(shù)n,總有Tn<r(r∈N+),則r的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,∠ACB=30°,D為AC上一點,∠ABD=30°,延長BD至E,連接AE、CE,若∠ECB=2∠EBC,則線段AE與CE的數(shù)量關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x+1
+
2-x
的定義域是( 。
A、[-1,+∞)
B、[2,+∞)
C、[-1,2]
D、(-1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差d>0,前n項和為Sn,等比數(shù)列{bn}的公比q是正整數(shù),前n項和為Tn,若a1=d,b1=d2,且
a12+a22+a32
b1+b2+b3
是正整數(shù),則
S92
T8 
等于( 。
A、
45
17
B、
135
17
C、
90
17
D、
270
17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,|
AB
|=5,|
CA
|=3,P為線段AB上的點,
CP
=x•
CA
|
CA
|
+y•
CB
|
CB
|
,則xy的最大值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3sin(ωx-
π
6
),(ω>0)和g(x)=2cos(2x+θ)+1的圖象的對稱軸完全相同,當x∈[0,
π
2
]時,求出f(x)的值域.

查看答案和解析>>

同步練習冊答案