設(shè)x,y∈R,a>1,b>1,若,,則的最大值為(   )

A.2            B.          C.1         D.

 

【答案】

C

【解析】

試題分析:因?yàn),x,y∈R,a>1,b>1,且,

所以,,,

由均值定理,,故

故選C.

考點(diǎn):對(duì)數(shù)及對(duì)數(shù)運(yùn)算,基本不等式

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
s
=(x+1,y),
t
=(y,x-1),(x,y∈R)滿足|
s
|+|
t
|=2
2
,已知定點(diǎn)A(1,0),動(dòng)點(diǎn)P(x,y)
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C的方程;
(2)過原點(diǎn)O作直線l交軌跡C于兩點(diǎn)M,N,若,試求△MAN的面積.
(3)過原點(diǎn)O作直線l與直線x=2交于D點(diǎn),過點(diǎn)A作OD的垂線與以O(shè)D為直徑的圓交于點(diǎn)G,H(不妨設(shè)點(diǎn)G在直線OD上方),試判斷線段OG的長度是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(A類)已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過定點(diǎn)A,且點(diǎn)A又在函數(shù)f(x)=log
3
(x+a)的圖象上.
(1)求實(shí)數(shù)a的值;                (2)解不等式f(x)<log
3
a;
(3)|g(x+2)-2|=2b有兩個(gè)不等實(shí)根時(shí),求b的取值范圍.
(B類)設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;     (2)求證:f(x)為奇函數(shù);
(3)若函數(shù)f(x)是R上的增函數(shù),已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)設(shè)f(x),g(x)是定義在R上的恒不為零的函數(shù),對(duì)任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若a1=
1
2
,an=f(n)(n∈N*)
,且b1=1,bn=g(n)(n∈N*),則數(shù)列{anbn}的前n項(xiàng)和為Sn為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海模擬)設(shè)向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,滿足|
s
|+|
t
 |=2
2
,已知兩定點(diǎn)A(1,0),B(-1,0),動(dòng)點(diǎn)P(x,y),
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C的方程;
(2)已知直線m:y=x+t交軌跡C于兩點(diǎn)M,N,(A,B在直線MN兩側(cè)),求四邊形MANB的面積的最大值.
(3)過原點(diǎn)O作直線l與直線x=2交于D點(diǎn),過點(diǎn)A作OD的垂線與以O(shè)D為直徑的圓交于點(diǎn)G,H(不妨設(shè)點(diǎn)G在直線OD上方),求證:線段OG的長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)定義在R上,對(duì)任意m、n恒有f(m+n)=f(mf(n),且當(dāng)x>0時(shí),0<f(x)<1.

(1)求證: f(0)=1,且當(dāng)x<0時(shí),f(x)>1;

(2)求證:f(x)在R上單調(diào)遞減;

(3)設(shè)集合A={ (x,y)|f(x2f(y2)>f(1)},集合B={(x,y)|f(axg+2)=1,a∈R},若AB=,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案