【題目】[選修4—5:參數(shù)方程選講]

在直角坐標(biāo)系xoy中,曲線(xiàn)的參數(shù)方程是(t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程是

(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)若兩曲線(xiàn)交點(diǎn)為A、B,求

【答案】(1)的普通方程是:,曲線(xiàn)的直角坐標(biāo)方程是:(2)

【解析】

(1)將C1的參數(shù)方程兩邊平分再相減消去參數(shù)t得到普通方程,將C2的極坐標(biāo)方程展開(kāi),根據(jù)極坐標(biāo)與直角坐標(biāo)的對(duì)應(yīng)關(guān)系得出C2的直角坐標(biāo)方程;
(2)求出C2的參數(shù)方程,代入C1的普通方程,根據(jù)參數(shù)的幾何意義得出交點(diǎn)間的距離.

(1)曲線(xiàn)的普通方程是:

曲線(xiàn)的直角坐標(biāo)方程是:

(2)因?yàn)槭沁^(guò)點(diǎn)的直線(xiàn)

所以的的參數(shù)方程為:t為參數(shù))

代入的的普通方程,得

解得,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、是雙曲線(xiàn) 的兩個(gè)焦點(diǎn),上一點(diǎn),若,是△的最小內(nèi)角,且,則雙曲線(xiàn)的漸近線(xiàn)方程是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,為橢圓的左、右焦點(diǎn),過(guò)右焦點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),且的周長(zhǎng)為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)A是第一象限內(nèi)橢圓上一點(diǎn),且在軸上的正投影為右焦點(diǎn),過(guò)點(diǎn)作直線(xiàn)分別交橢圓于兩點(diǎn),當(dāng)直線(xiàn)的傾斜角互補(bǔ)時(shí),試問(wèn):直線(xiàn)的斜率是否為定值;若是,請(qǐng)求出其定值;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開(kāi)一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).

表中.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作燒水時(shí)間關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類(lèi)型?(不必說(shuō)明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問(wèn)求得的回歸方程知為多少時(shí),燒開(kāi)一壺水最省煤氣?

附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)值分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1),求的取值范圍;

(2),且,證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的方程為,圓軸相切于點(diǎn),與軸正半軸相交于、兩點(diǎn),且,如圖1.

1)求圓的方程;

2)如圖1,過(guò)點(diǎn)的直線(xiàn)與橢圓相交于、兩點(diǎn),求證:射線(xiàn)平分;

3)如圖2所示,點(diǎn)、是橢圓的兩個(gè)頂點(diǎn),且第三象限的動(dòng)點(diǎn)在橢圓上,若直線(xiàn)軸交于點(diǎn),直線(xiàn)軸交于點(diǎn),試問(wèn):四邊形的面積是否為定值?若是,請(qǐng)求出這個(gè)定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形中, , ,點(diǎn)中點(diǎn),沿折起至,如下圖所示,點(diǎn)在面的射影落在上.

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;

(Ⅱ)當(dāng)時(shí),討論的單調(diào)性;

(Ⅲ)若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】眾所周知,城市公交車(chē)的數(shù)量太多會(huì)造成資源的浪費(fèi),太少又難以滿(mǎn)足乘客的需求,為此,某市公交公司在某站臺(tái)的50名候車(chē)乘客中隨機(jī)抽取10名,統(tǒng)計(jì)了他們的候車(chē)時(shí)間(單位:分鐘),得到下表.

候車(chē)時(shí)間

人數(shù)

1

4

2

2

1

1)估計(jì)這10名乘客的平均候車(chē)時(shí)間(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替);

2)估計(jì)這50名乘客的候車(chē)時(shí)間少于10分鐘的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案