【題目】矩形中, , ,點(diǎn)中點(diǎn),沿折起至,如下圖所示,點(diǎn)在面的射影落在上.

(Ⅰ)求證:

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)見解析;(Ⅱ) .

【解析】試題分析:(Ⅰ)根據(jù)射影可得面面垂直,再有面面垂直的性質(zhì)得線面垂直,從而;(Ⅱ)以為坐標(biāo)原點(diǎn),以過點(diǎn)且平行于的直線為軸,過點(diǎn)且平行于的直線為軸,直線軸,建立如圖所示直角坐標(biāo)系.利用空間向量計(jì)算二面角.

試題解析:(Ⅰ)由條件,點(diǎn)在平面的射影落在

平面平面,易知

平面,而平面

(Ⅱ)以為坐標(biāo)原點(diǎn),以過點(diǎn)且平行于的直線為軸,過點(diǎn)且平行于的直線為軸,直線軸,建立如圖所示直角坐標(biāo)系.

,

設(shè)平面的法向量為

,即,令,可得

設(shè)平面的法向量為

,即,令,可得

考慮到二面角為鈍二面角,則二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)f(x)=(x﹣l)(log3a)2﹣6(log3a)x+x+l在x∈[0,l]內(nèi)恒為正值,則a的取值范圍是(
A.﹣1<a<
B.a<
C.a>
D. <a<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別求出適合下列條件的直線方程:
(Ⅰ)經(jīng)過點(diǎn)且在x軸上的截距等于在y軸上截距的2倍;
(Ⅱ)經(jīng)過直線2x+7y﹣4=0與7x﹣21y﹣1=0的交點(diǎn),且和A(﹣3,1),B(5,7)等距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,x∈R,且f(x)為奇函數(shù). (I)求a的值及f(x)的解析式;
(II)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的定義域?yàn)榧螦,y=﹣x2+2x+2a的值域?yàn)锽.
(1)若a=2,求A∩B
(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:
①已知集合M滿足M{1,2,3},且M中至少有一個(gè)奇數(shù),這樣的集合M有6個(gè);
②已知函數(shù)f(x)= 的定義域是R,則實(shí)數(shù)a的取值范圍是(﹣12,0);
③函數(shù)f(x)=loga(x﹣3)+1(a>0且a≠1)圖象恒過定點(diǎn)(4,2);
④已知函數(shù)f(x)=x2+bx+c對(duì)任意實(shí)數(shù)t都有f(3+t)=f(3﹣t),則f(1)>f(4)>f(3).
其中正確的命題序號(hào)是(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形, 底面, 分別是的中點(diǎn).

(1)在圖中畫出過點(diǎn)的平面,使得平面(須說明畫法,并給予證明);

(2)若過點(diǎn)的平面平面且截四棱錐所得截面的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓過點(diǎn)A(2,1),離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓相交于BC兩點(diǎn)(異于點(diǎn)A),線段BCy軸平分,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案