A. | 114 | B. | 10 | C. | 150 | D. | 50 |
分析 作出兩平面區(qū)域,計(jì)算兩區(qū)域的公共面積,得出芝麻落在區(qū)域Γ內(nèi)的概率
解答 解:作出平面區(qū)域Ω如圖:則區(qū)域Ω的面積為S△ABC=$\frac{1}{2}$×3×$\frac{3}{2}$=$\frac{9}{4}$.
區(qū)域Γ表示以D($\frac{1}{2}$,0)為圓心,以$\frac{1}{2}$為半徑的圓
則區(qū)域Ω和Γ的公共面積為S′=$\frac{3}{4}$π×($\frac{1}{2}$)2+$\frac{1}{2}$×($\frac{1}{2}$)2=$\frac{3π}{16}$+$\frac{1}{8}$.
∴芝麻落入?yún)^(qū)域Γ的概率為$\frac{S'}{{S}_{△ABC}}=\frac{\frac{3π}{16}+\frac{1}{8}}{\frac{9}{4}}$=$\frac{3π+2}{36}$.
∴落在區(qū)域Γ中芝麻數(shù)約為360×$\frac{3π+2}{36}$=30π+20≈114.
故選A.
點(diǎn)評 本題考查了幾何概型的概率計(jì)算,不等式與平面區(qū)域,作出平面區(qū)域計(jì)算兩區(qū)域的公共面積是解題關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3 個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<λ2<λ1 | B. | λ2<λ1<0 | C. | λ1<λ2<0 | D. | 0<λ1<λ2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | B. | y=x0與g(x)=$\frac{1}{{x}^{0}}$ | ||
C. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | D. | f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com