6.如圖,當(dāng)參數(shù)λ=λ1,λ2時(shí),連續(xù)函數(shù)y=$\frac{x}{1+λx}$(x≥0)的圖象分別對(duì)應(yīng)曲線C1和C2,則( 。
A.0<λ2<λ1B.λ2<λ1<0C.λ1<λ2<0D.0<λ1<λ2

分析 利用函數(shù)圖象的一致性,利用特殊值進(jìn)行判斷即可.

解答 解:由圖象可知,曲線C1與C2的圖象低,
不妨設(shè)x=1,由圖象可知當(dāng)x=1時(shí),$\frac{1}{1{+λ}_{1}}$>$\frac{1}{1{+λ}_{2}}$,
∴1+λ1<1+λ2,即λ1<λ2
∵x≥0,∴要使函數(shù)有意義,則1+λx>0恒成立,∴λ>0.
即λ1>0,λ2>0,∴λ2>λ1>0.
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)圖象的識(shí)別和判斷,利用特殊值法是解決本題的技巧,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=a-$\frac{2}{x}$
(1)若2f(1)=f(2),求a的值;
(2)判斷f(x)在(-∞,0)上的單調(diào)性并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.給出下列函數(shù)①$f(x)=(\frac{1}{2})^{x}$; ②f(x)=x2; ③f(x)=x3; ④$f(x)={x}^{\frac{1}{2}}$;⑤f(x)=log2x.其中滿足條件f $(\frac{{x}_{1}+{x}_{2}}{2})$>$\frac{f({x}_{1})+f({x}_{2})}{2}$  (0<x1<x2)的函數(shù)的序號(hào)是④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,向量$\overrightarrow{m}$=(tanA+tanB,-tanB),$\overrightarrow{n}$=(b,2c),且$\overrightarrow{m}⊥\overrightarrow{n}$
(1)求角A的大;
(2)若$a=\sqrt{13}$,△ABC的面積為$3\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.冪函數(shù)f(x)的圖象過(guò)點(diǎn)$({2,\sqrt{2}})$,則$f({\frac{1}{2}})$=( 。
A.$\sqrt{2}$B.4C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若不等式組 $\left\{\begin{array}{l}x-y+1≥0\\ y+\frac{1}{2}≥0\\ x+y-1≤0\end{array}\right.$表示的區(qū)域?yàn)棣,不等?nbsp;${({x-\frac{1}{2}})^2}+{y^2}≤\frac{1}{4}$表示的區(qū)域?yàn)棣,向Ω區(qū)域均勻隨機(jī)撒360顆芝麻,則落在區(qū)域τ中芝麻數(shù)約為(  )
A.114B.10C.150D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{{{x^2}+a}}{x}$(常數(shù)a∈R).
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)若f(1)=2,證明函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=sin2x+cos2x.
(1)求周期,
(2)若將f(x)的圖象向右平移φ個(gè)單位,所得圖象關(guān)于y軸對(duì)稱(chēng),求φ的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=2$\sqrt{3}$sin(π+x) cos(-3π-x)-2sin($\frac{π}{2}$-x)cos(π-x).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f($\frac{α}{2}$-$\frac{π}{12}$)=$\frac{3}{2}$,α是第二象限角,求cos(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案