已知點(diǎn)F1(– 3,0)和F2(3,0),動(dòng)點(diǎn)P到F1、F­2的距離之差為4,則點(diǎn)P的軌跡方程為
A.B.
C.D.
B
由條件知<.根據(jù)雙曲線定義,點(diǎn)P是焦點(diǎn)在x軸上的雙曲線上的點(diǎn),,所以,雙曲線方程為,又
所以點(diǎn)P在雙曲線左之上。 故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)=1.圓的參數(shù)方程為(θ為參數(shù),r >0),若直線l與圓C相切,求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個(gè)頂點(diǎn),△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)分別作直線,交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,,且,證明:直線過定點(diǎn)().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),它與定點(diǎn)Q(3,0)所連線段PQ的中點(diǎn)M的軌跡方程是:
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線處的切線與曲線處的切線互相平行,則的值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,頂點(diǎn)A,B,動(dòng)點(diǎn)D,E滿足:①;②,③共線.
(Ⅰ)求△ABC頂點(diǎn)C的軌跡方程;
(Ⅱ)是否存在圓心在原點(diǎn)的圓,只要該圓的切線與頂點(diǎn)C的軌跡有兩個(gè)不同交點(diǎn)M,N,就一定有,若存在,求該圓的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)且與曲線相切的切線與直線的位置關(guān)系是
A.平行B.重合C.垂直D.斜交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與曲線 的公共點(diǎn)的個(gè)數(shù)為(     )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是橢圓的左、右焦點(diǎn),是該橢圓短軸的一個(gè)端點(diǎn),直線與橢圓交于點(diǎn),若成等差數(shù)列,則該橢圓的離心率為 .

查看答案和解析>>

同步練習(xí)冊(cè)答案