【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
平面直角坐標(biāo)系中,射線:,曲線的參數(shù)方程為(為參數(shù)),曲線的方程為;以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.
(Ⅰ)寫出射線的極坐標(biāo)方程以及曲線的普通方程;
(Ⅱ)已知射線與交于,,與交于,,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:的焦點(diǎn)坐標(biāo)為,點(diǎn),過點(diǎn)P作直線l交拋物線C于A,B兩點(diǎn),過A,B分別作拋物線C的切線,兩切線交于點(diǎn)Q,且兩切線分別交x軸于M,N兩點(diǎn),則面積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn),是圓上任意一點(diǎn),線段的垂直平分線交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為曲線.
1求曲線的方程;
2若直線 與曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和雙曲線有共同焦點(diǎn),是它們的一個(gè)交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的最大值為( )
A. 3B. 2C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與直線平行,且過坐標(biāo)原點(diǎn),圓的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)設(shè)直線和圓相交于點(diǎn)、兩點(diǎn),求的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極圖被稱為“中華第一圖”,閃爍著中華文明進(jìn)程的光輝,它是由黑白兩個(gè)魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時(shí)等分成兩個(gè)部分的函數(shù)稱為圓O的一個(gè)“太極函數(shù)”,設(shè)圓O:,則下列說法中正確的是( )
A.函數(shù)是圓O的一個(gè)太極函數(shù)
B.圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)
C.函數(shù)是圓O的一個(gè)太極函數(shù)
D.函數(shù)的圖象關(guān)于原點(diǎn)對稱是為圓O的太極函數(shù)的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,離心率,且短軸長為4.
求橢圓的方程;
已知,,若直線l與圓相切,且交橢圓E于C、D兩點(diǎn),記的面積為,記的面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn),定義,其中為坐標(biāo)原點(diǎn),對于下列結(jié)論:
符合的點(diǎn)的軌跡圍成的圖形面積為8;
設(shè)點(diǎn)是直線:上任意一點(diǎn),則;
設(shè)點(diǎn)是直線:上任意一點(diǎn),則使得“最小的點(diǎn)有無數(shù)個(gè)”的充要條件是;
設(shè)點(diǎn)是橢圓上任意一點(diǎn),則.
其中正確的結(jié)論序號(hào)為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com