分析 (1)極坐標方程兩邊同乘ρ,根據極坐標與直角坐標的對于關系得出直角坐標方程;
(2)把直線l的參數方程代入曲線C的方程,利用根與系數的關系和參數的幾何意義化簡即可得出結論.
解答 解:(1)∵ρ-ρcos2θ-4cosθ=0,∴ρ2-ρ2cos2θ-4ρcosθ=0,
∴x2+y2-x2-4x=0,即y2=4x.
(2)把為$\left\{\begin{array}{l}x=a+tcosθ\\ y=tsinθ\end{array}\right.(t$為參數,θ為傾斜角)代入y2=4x得:
sin2θ•t2-4cosθ•t-4a=0,
∴t1+t2=$\frac{4cosθ}{si{n}^{2}θ}$,t1t2=-$\frac{4a}{si{n}^{2}θ}$,
∴$\frac{1}{{{{|{QA}|}^2}}}+\frac{1}{{{{|{QB}|}^2}}}$=$\frac{1}{{{t}_{1}}^{2}}+\frac{1}{{{t}_{2}}^{2}}$=$\frac{{{t}_{1}}^{2}+{{t}_{2}}^{2}}{{{t}_{1}}^{2}{{t}_{2}}^{2}}$=$\frac{({t}_{1}+{t}_{2})^{2}-2{t}_{1}{t}_{2}}{{{t}_{1}}^{2}{{t}_{2}}^{2}}$=$\frac{16co{s}^{2}θ+8asi{n}^{2}θ}{16{a}^{2}}$,
∴當a=2時,$\frac{1}{{{{|{QA}|}^2}}}+\frac{1}{{{{|{QB}|}^2}}}$為定值$\frac{1}{4}$.
點評 本題考查了參數方程的幾何意義,極坐標與直角坐標的轉化,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(-\frac{1}{24}+2kπ,\frac{5}{24}+2kπ)$,(k∈Z) | B. | $(-\frac{1}{12}+\frac{k}{2},\frac{5}{12}+\frac{k}{2})$,(k∈Z) | ||
C. | $(-\frac{1}{12}+2kπ,\frac{1}{3}+2kπ)$,(k∈Z) | D. | $(-\frac{1}{24}+\frac{k}{2},\frac{5}{24}+\frac{k}{2})$,(k∈Z) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -3 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com