1.若三階行列式$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array}|$=M,則$|\begin{array}{l}{-3{a}_{11}}&{-3{a}_{12}}&{-3{a}_{13}}\\{-3{a}_{21}}&{-3{a}_{22}}&{-3{a}_{23}}\\{-3{a}_{31}}&{-3{a}_{32}}&{-3{a}_{33}}\end{array}|$=(  )
A.-9MB.9MC.27MD.-27M

分析 根據(jù)行列式的計(jì)算法則,即可求得結(jié)果.

解答 解:$|\begin{array}{l}{-3{a}_{11}}&{-3{a}_{12}}&{-3{a}_{13}}\\{-3{a}_{21}}&{-3{a}_{22}}&{-3{a}_{23}}\\{-3{a}_{31}}&{-3{a}_{32}}&{-3{a}_{33}}\end{array}|$=(-3)3$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array}|$=-27M,
故答案選:D.

點(diǎn)評(píng) 本題考查行列式的性質(zhì),考查行列式的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過(guò)點(diǎn)$({1,\frac{{2\sqrt{3}}}{3}})$,離心率為$\frac{{\sqrt{3}}}{3}$,過(guò)橢圓的右焦點(diǎn)F作互相垂直的兩條直線分別交橢圓于A,B和C,D,且M,N分別為AB,CD的中點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線MN過(guò)定點(diǎn),并求出這個(gè)定點(diǎn);
(Ⅲ)當(dāng)AB,CD的斜率存在時(shí),求△FMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.證明不等式:
(1)當(dāng)x∈[-1,0]時(shí),求證:$\frac{1+x}{1-x}$≤e2x≤$\frac{1}{(1-x)^{2}}$;
(2)已知函數(shù)f(x)=xlnx,設(shè)A(x1,f(x1)),B(x2,f(x2)),且x1≠x2,證明:$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<f′($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.過(guò)點(diǎn)(2,3)的直線l與圓 C:x2+y2+4x+3=0交于A,B兩點(diǎn),當(dāng)弦|AB|取最大值時(shí),直線l的方程為( 。
A.3x-4y+6=0B.3x-4y-6=0C.4x-3y+8=0D.4x+3y-8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)(x<0)}\\{g(x)+1(x>0)}\end{array}\right.$,若f(x)是奇函數(shù),則g(3)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)雙曲線M的方程為:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1.
(1)求M的實(shí)軸長(zhǎng)、虛軸長(zhǎng)及焦距;
(2)若拋物線N:y2=2px(p>0)的焦點(diǎn)為雙曲線M的右頂點(diǎn),且直線x=m(m>0)與拋物線N交于A、B兩點(diǎn),若OA⊥OB(O為坐標(biāo)原點(diǎn)),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖:A,B,C是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的頂點(diǎn),點(diǎn)F(c,0)為橢圓的右焦點(diǎn),離心率為$\frac{{\sqrt{3}}}{2}$,且橢圓過(guò)點(diǎn)$({2\sqrt{3},1})$.
(Ⅰ)求橢圓的方程;
(Ⅱ)若P是橢圓上除頂點(diǎn)外的任意一點(diǎn),直線CP交x軸于點(diǎn)E,直線BC與AP相交于點(diǎn)D,連結(jié)DE.設(shè)直線AP的斜率為k,直線DE的斜率為k1,證明:$2{k_1}=k+\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知過(guò)點(diǎn)P(1,1)的直線l1,l2的斜率分別為k1,k2,圓O以原點(diǎn)為圓心,2為半徑,直線l1交圓O于點(diǎn)M,N,直線l2交圓O于點(diǎn)P、Q,若$\frac{|MN|}{|PQ|}$=$\frac{\sqrt{6}}{2}$,且k1+k2=0,則k1k2等于( 。
A.1B.-$\frac{1}{9}$C.-9D.-$\frac{1}{9}$或-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知定義在[-$\frac{π}{2}$,$\frac{π}{2}$]的函數(shù)f(x)=sinx(cosx+1)-ax,若該函數(shù)僅有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{2}{π}$,2]B.(-∞,$\frac{2}{π}$)∪[2,+∞)C.[0,$\frac{2}{π}$)D.(-∞,0)∪[$\frac{2}{π}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案