【題目】(本小題滿分12分)已知在四棱錐中,底面是矩形,且,,平面,,分別是線段,的中點.
(1)判斷并說明上是否存在點,使得平面?若存在,求出的值;若不
存在,請說明理由;
(2)若與平面所成的角為,求二面角的平面角的余弦值.
【答案】(1)存在,;(2).
【解析】
試題(1)根據(jù)四棱錐中,底面,底面是矩形可知,可以通過建立空間直角坐標系來求解問題,設,,根據(jù)條件中給出的數(shù)據(jù)可得,從而可求得平面的一個法向量,再由平面,可知,可得,因此存在滿足條件的點,且;(2)由與平面所成的角為可知,結合(1)可知平面的一個法向量為,再取平面的一個法向量為,可求得,即二面角的平面角的余弦值為.
試題解析:(1)建立如圖所示的空間直角坐標系,設,,
∵,∴,,,
設平面的一個法向量,∴,∴,∴,
∵,∴,∴;(2)∵為直線與平面所成的角,
∴,∵,∴,由(1)知,平面的一個法向量為,
取平面的一個法向量為,∴,∴二面角的平面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】合肥一中、六中為了加強交流,增進友誼,兩校準備舉行一場足球賽,由合肥一中版畫社的同學設計一幅矩形宣傳畫,要求畫面面積為,畫面的上、下各留空白,左、右各留空白.
(1)如何設計畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最小?
(2)設畫面的高與寬的比為,且,求為何值時,宣傳畫所用紙張面積最小?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究性學習小組對晝夜溫差大小與某種子發(fā)芽多少之間的關系進行研究,下面是3月1日至5日每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù)的詳細記錄:
(1)根據(jù)3月2日至3月4日的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)顆 | 23 | 25 | 30 | 26 | 16 |
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均小于2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運輸貨物到乙地,運輸成本包括燃料費用和其他費用.已知該貨輪每小時的燃料費與其速度的平方成正比,比例系數(shù)為,其他費用為每小時元,且該貨輪的最大航行速度為海里/小時.
()請將該貨輪從甲地到乙地的運輸成本表示為航行速度(海里/小時)的函數(shù).
()要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司結合公司的實際情況針對調休安排展開問卷調查,提出了,,三種放假方案,調查結果如下:
支持方案 | 支持方案 | 支持方案 | |
35歲以下 | 20 | 40 | 80 |
35歲以上(含35歲) | 10 | 10 | 40 |
(1)在所有參與調查的人中,用分層抽樣的方法抽取個人,已知從“支持方案”的人中抽取了6人,求的值;
(2)在“支持方案”的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,一條準線方程為過橢圓的上頂點A作一條與x軸、y軸都不垂直的直線交橢圓于另一點P,P關于x軸的對稱點為Q.
求橢圓的方程;
若直線AP,AQ與x軸交點的橫坐標分別為m,n,求證:mn為常數(shù),并求出此常數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,是過定點且傾斜角為的直線,在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為 .
(1)寫出直線的參數(shù)方程,并將曲線的方程為化直角坐標方程;
(2)若曲線與直線相交于不同的兩點,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x(e+1)
(I)求函數(shù)y=f(x)的圖象在點(0,f(0))處的切線方程;
(II)若函數(shù)g(x)=f(x)-ae-x,求函數(shù)g(x)在[1,2]上的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,算得, ,
,
(1).求家庭的月儲蓄對月收入的線性回歸方程;
(2).判斷變量與之間的正相關還是負相關;
(3).若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:回歸直線的斜率和截距的最小二乘估計公式分別為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com