精英家教網 > 高中數學 > 題目詳情
知橢圓的兩焦點、,離心率為,直線與橢圓交于兩點,點軸上的射影為點

(1)求橢圓的標準方程;
(2)求直線的方程,使的面積最大,并求出這個最大值.
(1)(2)直線的方程為:,的面積的最大值為

試題分析:(1)利用橢圓的基本性質求解
(2)利用弦長公式及基本不等式求解
試題解析:(1)設橢圓方程為,則
 ,,
所以,所求橢圓方程為:
(2)由得:,


當且僅當時取等號,
此時,直線的方程為:的面積的最大值為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系中,已知點,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(1)當點在圓上運動時,求點的軌跡方程;
(2)已知,是曲線上的兩點,若曲線上存在點,滿足為坐標原點),求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的焦距為,過右焦點和短軸一個端點的直線的斜率為,為坐標原點.
(1)求橢圓的方程.
(2)設斜率為的直線相交于、兩點,記面積的最大值為,證明:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

給定橢圓,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.

(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓的“準圓”上的動點,過點作橢圓的切線交“準圓”于點.
(ⅰ)當點為“準圓”與軸正半軸的交點時,求直線的方程,
并證明
(ⅱ)求證:線段的長為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的兩焦點在軸上, 且兩焦點與短軸的一個頂點的連線構成斜邊長為2的等腰直角三角形
(1)求橢圓的方程;
(2)過點的動直線交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q?若存在求出點Q的坐標;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓C:的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF,若,則C的離心率e=        

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過原點O作兩條相互垂直的直線分別與橢圓P:交于A、C與B、D, 則四邊形ABCD面積最小值為______________________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在同一坐標系中,方程的曲線大致是( )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,,是雙曲線與橢圓的公共焦點,點,在第一象限的公共點.若|F1F2|=|F1A|,則的離心率是(    ).
A.B.C.D.

查看答案和解析>>

同步練習冊答案