已知定義在R上的函數(shù)f(x)滿(mǎn)足f(1)=2,f(x)<1,則不等式f(x2)<x2+1的解集為_(kāi)_______.

(-∞,-1)∪(1,+∞)
分析:設(shè)出函數(shù)f(x)滿(mǎn)足f(1)=2且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f′(x)<1,然后求出不等式的解集即可.
解答:由題意:定義在實(shí)數(shù)集R上的函數(shù)f(x)滿(mǎn)足f(1)=2,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f′(x)<1 (x∈R),
不妨設(shè)f(x)=2,所以不等式f(x2)<x2+1,化為 x2+1>2,即x2>1,解得x∈(-∞,-1)∪(1,+∞).
故答案為:(-∞,-1)∪(1,+∞).
點(diǎn)評(píng):此題是個(gè)中檔題.考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力,會(huì)利用函數(shù)的單調(diào)性解決實(shí)際問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)y=f(x)滿(mǎn)足下列條件:
①對(duì)任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0
,
②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足f(x+1)=-f(x),且x∈(-1,1]時(shí)f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時(shí),f(2013)的值為(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱(chēng),則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊(cè)答案