【題目】已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為(  )

(附:若隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)

A. 4.56%B. 13.59%C. 27.18%D. 31.74%

【答案】B

【解析】

由題意P(﹣3ξ3)=68.27%,P(﹣6ξ6)=95.45%,可得P3ξ6)=95.45%68.27%),即可得出結(jié)論.

解:由題意P(﹣3ξ3)=68.27%,P(﹣6ξ6)=95.45%,

P3ξ6)=95.45%68.27%)=13.59%

故選B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列滿足an=2an-1+2n+1(n∈N*,n≥2), .

(1)求的值;

(2)是否存在一個實數(shù)t,使得 (n∈N*),且數(shù)列{}為等差數(shù)列?若存在,求出實數(shù)t;若不存在,請說明理由;

(3)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一智能掃地機器人在處發(fā)現(xiàn)位于它正西方向的處和北偏東30°方向上的處分別有需要清掃的垃圾,紅外線感應測量發(fā)現(xiàn)機器人到的距離比到的距離少0.4米,于是選擇沿路線清掃,已知智能掃地機器人的直線行走速度為0.2,忽略機器人吸入垃圾及在處旋轉(zhuǎn)所用時間,10秒鐘完成了清掃任務.

1、兩處垃圾的距離是多少?

2)智能掃地機器人此次清掃行走路線的夾角的正弦值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;

( Ⅱ ) 設直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設點,代入向量,利用三角函數(shù)的值域來求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標方程為.

(Ⅱ)由直線的方程可得點,點.

設點,則 .

.

由(Ⅰ)知,則 .

因為,所以.

型】解答
結(jié)束】
23

【題目】選修4-5:不等式選講

已知函數(shù), .

(Ⅰ)若對于任意, 都滿足,求的值;

(Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月9-25日第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

(Ⅰ)根據(jù)上表說明,能否有的把握認為,收看開幕式與性別有關?

(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學生中采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男女學生各選取多少人?

(ⅱ)若從這8人中隨機選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠家具車間造、型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時和2小時,漆工油漆一張、型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張、型型桌子分別獲利潤2千元和3千元.

(1)列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出可行域;

(2)怎樣分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠家具車間造、型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時和2小時,漆工油漆一張、型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張、型型桌子分別獲利潤2千元和3千元.

(1)列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出可行域;

(2)怎樣分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三課外興趣小組為了解高三同學高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調(diào)查,情況如下表:

打算觀看

不打算觀看

女生

20

b

男生

c

25

1)求出表中數(shù)據(jù)b,c;

2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;

3)為了計算10人中選出9人參加比賽的情況有多少種,我們可以發(fā)現(xiàn)它與10人中選出1人不參加比賽的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是偶函數(shù),且滿足,當時, ,當時, 的最大值為.

(1)求實數(shù)的值;

(2)函數(shù),若對任意的,總存在,使不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案