17.已知等比數(shù)列{an}中,a2=2,又a2,a3+1,a4成等差數(shù)列,數(shù)列{bn}的前n項和為Sn,且$\frac{1}{{S}_{n}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,則a8+b8=( 。
A.311B.272C.144D.80

分析 由題意可得公比q的方程,解方程可得a8,再由前n項和與通項公式的關(guān)系可得b8,相加可得.

解答 解:∵等比數(shù)列{an}中,a2=2,又a2,a3+1,a4成等差數(shù)列,
∴2(a3+1)=a2+a4,故2(2q+1)=2+2q2
解方程可得公比q=2,故a8=2q6=128;
又∵數(shù)列{bn}的前n項和為Sn,且$\frac{1}{{S}_{n}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{n+1-n}{n(n+1)}$=$\frac{1}{n(n+1)}$,∴Sn=n(n+1),
∴b8=S8-S7=72-56=16,
∴a8+b8=128+16=144,
故選:C.

點評 本題考查等比數(shù)列的通項公式,涉及前n項和與通項公式的關(guān)系,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.對于函數(shù)f(x),若對于任意的a,b.c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“三角形函數(shù)”.已知函數(shù)f(x)=$\frac{sinx+m}{sinx+2}$是“三角形函數(shù)”,則實數(shù)m的取值范圍是($\frac{7}{5}$,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)f(x)=$\frac{x-3}{x+2}$,求f(0),f(a),f[f(x)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.定義:若一個正整數(shù)表示為兩個連續(xù)偶數(shù)的平方差,那么這個正整數(shù)稱為“神秘數(shù)”,例如12=42-22,12就是“神秘數(shù)”.(1)設(shè)“神秘數(shù)”構(gòu)成數(shù)列{an},求數(shù)列{an}的通項公式;
(2)在區(qū)間[1,200]內(nèi)求所有“神秘數(shù)”之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,一渡船自岸邊A處出發(fā),與岸邊成70°方向以30kmh的速度航行,由于河水流速的影響,它實際航行的方向與河岸成120°,試求水流速度(水流方向與河岸平行,精確到0.1km/h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(2$\sqrt{3}$,2),則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.
(1)若$\frac{a}{cosA}$=$\frac{cosB}$,且sin2A(2-cosC)=cos2B+$\frac{1}{2}$,求角C的大;
(2)若△ABC為銳角三角形,且A=$\frac{π}{4}$,a=2,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上一點P到一個焦點的距離為2,則點P到另一焦點的距離為( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,左、右焦點分別為F1、F2,點$P(2,\sqrt{3})$,且F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點A(2,0)且斜率為k的直線l與橢圓C交于D、E兩點,點F2為橢圓的右焦點,求證:直線DF2與直線EF2的斜率之和為定值.

查看答案和解析>>

同步練習(xí)冊答案