函數(shù)的單調(diào)遞增區(qū)間是( )
A.(-∞,-1]
B.[2,+∞)
C.
D.
【答案】分析:令t=,則 y=,函數(shù) y的增區(qū)間就是t的減區(qū)間,問題轉(zhuǎn)化為求t的減區(qū)間.
解答:解:令t===,
∴y=,≥t≥0,-1≤x≤2,
故t的減區(qū)間為[,2],
∴函數(shù)的增區(qū)間為[,2].
故選C.
點評:本小題主要考查函數(shù)的單調(diào)性及單調(diào)區(qū)間、不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.當(dāng)遇到函數(shù)綜合應(yīng)用時,處理的優(yōu)先考慮“讓解析式有意義”的原則,先確定函數(shù)的定義域.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

動點A(x,y)在圓x2+y2=1上繞坐標原點沿逆時針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時間t=0時,點A的坐標是(
1
2
,
3
2
)
,則當(dāng)0≤t≤12時,動點A的縱坐標y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動點A(x,y)在圓x2+y2=1上繞坐標原點沿逆時針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時間t=0時,點A的坐標是(
3
2
,
1
2
),則當(dāng)0≤t≤12時,動點A的縱坐標y關(guān)于 t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-x2+2lnx+8,則函數(shù)的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2|sinx|,則該函數(shù)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象如圖所示,則該函數(shù)的單調(diào)遞增區(qū)間是( 。
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案