分析 (1)在△ABC中利用正弦定理可求sinC,利用大邊對大角可得C為銳角,利用同角三角函數(shù)基本關(guān)系式可求cosC,利用兩角差的余弦函數(shù)公式即可計(jì)算得解cos∠ABC的值.
(2)由已知在△ABC中,利用余弦定理可求AC,進(jìn)而在△ABD中,利用余弦定理可求BD.
解答 (本題滿分為12分)
解:(1)∵在△ABC中,$\frac{AB}{sinC}=\frac{BC}{sinA}$,sinA=$\frac{\sqrt{3}}{2}$,
∴sinC=$\frac{ABsinA}{BC}$=$\frac{2×\frac{\sqrt{3}}{2}}{\sqrt{7}}$=$\frac{\sqrt{3}}{\sqrt{7}}$,由BC>AB,可得:A>C,C為銳角,
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{2}{\sqrt{7}}$,
∴cos∠ABC=cos($\frac{2π}{3}$-C)=cos$\frac{2π}{3}$cosC+sin$\frac{2π}{3}$sinC=$\frac{\sqrt{7}}{14}$.(6分)
(2)∵AB=2,BC=$\sqrt{7}$,cos∠ABC=$\frac{\sqrt{7}}{14}$.
∴在△ABC中,AC2=AB2+BC2-2AB•BC•cos∠ABC=9,可得:AC=3,
∴在△ABD中,BD2=AB2+AD2-2AB×ADcosA=$\frac{13}{4}$,
∴BD=$\frac{\sqrt{13}}{2}$.…(12分)
點(diǎn)評 本題主要考查了正弦定理,大邊對大角,同角三角函數(shù)基本關(guān)系式,兩角差的余弦函數(shù)公式,余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com