10.已知a=${∫}_{0}^{π}$$\frac{3}{2}$sinxdx,若二項式(ax-$\frac{1}{\root{3}{x}}$)n的展開式中各項系數(shù)之和為256.
(1)求展開式中二項式系數(shù)最大的項;
(2)求展開式中的常數(shù)項.

分析 (Ⅰ)根據(jù)定積分的計算求出a的值,根據(jù)二項式系數(shù)之和為256求得n=8,則展開式中二項式系數(shù)最大的項為第5項,根據(jù)通項公式即可求出.
(Ⅱ)在二項展開式的通項公式中,令x的冪指數(shù)等于0,求出r的值,即可求得展開式中的常數(shù)項.

解答 解:(Ⅰ)a=${∫}_{0}^{π}$$\frac{3}{2}$sinxdx=-$\frac{3}{2}$cosx|${\;}_{0}^{π}$=-$\frac{3}{2}$(-1-1)=3,
∵二項式(3x-$\frac{1}{\root{3}{x}}$)n的展開式中各項系數(shù)之和為256,
∴2n=256,
∴n=8,
∴展開式的通項公式為 Tr+1=(-1)rC8r38-r•${x}^{8-\frac{4r}{3}}$.
∴它的二項式系數(shù)最大的項為第五項,即T5=(-1)4C8438-4•${x}^{\frac{8}{3}}$=5670${x}^{\frac{8}{3}}$;
(Ⅱ)令8-$\frac{4r}{3}$=0,解得r=6,
∴展開式中的常數(shù)項(-1)6C8638-6=252.

點評 本題主要考查定積分的計算,二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-2x-t(t為常數(shù))有兩個零點,g(x)=$\frac{{x}^{2}+t}{x-1}$.
(Ⅰ)求g(x)的值域(用t表示);
(Ⅱ)當(dāng)t變化時,平行于x軸的一條直線與y=|f(x)|的圖象恰有三個交點,該直線與y=g(x)的圖象的交點橫坐標(biāo)的取值集合為M,求M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)$\overrightarrow a$=(1,2),$\overrightarrow b$=(2,4),$\overrightarrow c$=λ$\overrightarrow a$+$\overrightarrow b$且$\overrightarrow c$⊥$\overrightarrow a$,則λ=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F2(1,0),點P(1,$\frac{{\sqrt{2}}}{2}$)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)E,F(xiàn)為橢圓C上的兩點,O為坐標(biāo)原點,直線OE,OF的斜率之積為-$\frac{1}{2}$.求證:三角形OEF的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.現(xiàn)有2個男生.3個女生和1個老師共六人站成一排照相,若兩端站男生,3個女生中有且僅有兩人相鄰,則不同的站法種數(shù)是( 。
A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(5-x,-3-y),$\overrightarrow{OD}$=(4,1)
(1)若四邊形ABCD是平行四邊形,求x,y的值;
(2)若△ABC為等腰直角三角形,且∠B為直角,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=x3-ax2-ax在區(qū)間(0,1)內(nèi)只有極小值,則實數(shù)a的取值范圍是( 。
A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在數(shù)列{an}中,a1=1,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$(n∈N*).
(Ⅰ)計算a2、a3、a4
(Ⅱ)試猜想這個數(shù)列的通項公式,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.甲乙丙三人在進行一項投擲骰子游戲中規(guī)定:若擲出1點,甲得1分,若擲出2點或3點,乙得1分;若擲出4點或5點或6點,丙得1分,前后共擲3次,設(shè)x,y,z分別表示甲、乙、丙三人的得分.
(1)求x=0,y=1,z=2的概率;
(2)記ξ=x+z,求隨機變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案