分析 求出橢圓在x軸上的一對(duì)頂點(diǎn),可得雙曲線的焦點(diǎn),設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),由a,b,c的關(guān)系和漸近線方程,解方程可得a,b,進(jìn)而得到雙曲線的方程.
解答 解:焦點(diǎn)為橢圓$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{5}$=1在x軸上的一對(duì)頂點(diǎn),
可得雙曲線的焦點(diǎn)為(±$\sqrt{10}$,0),
設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),
則a2+b2=10,
雙曲線的漸近線方程為y=±$\frac{a}$x,
可得$\frac{a}$=$\frac{3}{4}$,
解方程可得a=$\frac{4\sqrt{10}}{5}$,b=$\frac{3\sqrt{10}}{5}$,
即有雙曲線的方程為$\frac{5{x}^{2}}{32}$-$\frac{5{y}^{2}}{18}$=1.
點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用橢圓的頂點(diǎn)坐標(biāo)和雙曲線的漸近線方程,以及基本量的關(guān)系,考查方程思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若事件A與事件B互斥,則事件A與事件B對(duì)立 | |
B. | 函數(shù)y=$\sqrt{{x}^{2}+9}+\frac{1}{\sqrt{{x}^{2}+9}}$(x∈R)的最小值為2 | |
C. | 若直線(m+1)x+my-2=0與直線mx-2y+5=0互相垂直,則m=1 | |
D. | “p∧q為真命題”是“p∨q為真命題”的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{4}$,$\frac{π}{3}$) | B. | ($\frac{π}{3}$,$\frac{2π}{3}$) | C. | ($\frac{2π}{3}$,$\frac{5π}{6}$) | D. | (0,$\frac{π}{3}$)∪($\frac{3π}{4}$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com