已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂
直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)當(dāng)P不在軸上時(shí),在曲線上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱,若存在,
求出的斜率范圍,若不存在,說(shuō)明理由。
(Ⅰ) ;(Ⅱ);
(3)在曲線上不存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱
【解析】本試題主要是考查了橢圓的方程求解以及直線與橢圓的位置關(guān)系的綜合運(yùn)用。
(1)利用橢圓的幾何性質(zhì)和直線與圓相切得到橢圓的方程。
(2)∵M(jìn)P=MF2,
∴動(dòng)點(diǎn)M到定直線的距離等于它到定點(diǎn)F1(1,0)的距離,
∴動(dòng)點(diǎn)M的軌跡是C為l1準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線可知結(jié)論。
(3)設(shè)點(diǎn)的坐標(biāo),利用對(duì)稱性來(lái)分析證明不存在符合題意的結(jié)論。
解:(Ⅰ)∵
∵直線相切,
∴ ∴
∵橢圓C1的方程是
(Ⅱ)∵M(jìn)P=MF2,
∴動(dòng)點(diǎn)M到定直線的距離等于它到定點(diǎn)F1(1,0)的距離,
∴動(dòng)點(diǎn)M的軌跡是C為l1準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線 ………………6分
∴點(diǎn)M的軌跡C2的方程為 …………7分
(3)顯然不與軸垂直,設(shè) (,), (,),且≠,則 =.
若存在C、D關(guān)于對(duì)稱,則=- ∵≠0,∴≠0
設(shè)線段的中點(diǎn)為,則=(+)=,=,
將代入方程求得:=-( -)=(-)
∵-=-≠1∴ ≠()= ∴線段的中點(diǎn)不在直線上.所以在曲線上不存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
| ||
3 |
OA |
OB |
1 |
2 |
OM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com