【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則它的體積為( )
A.48
B.16
C.32
D.16
【答案】B
【解析】解:根據(jù)三視圖得出:該幾何體是鑲嵌在正方體中的四棱錐O﹣ABCD, 正方體的棱長為4,O、A、D分別為棱的中點,
∴OD=2 ,AB=DC=OC=2 ,
做OE⊥CD,垂足是E,
∵BC⊥平面ODC,∴BC⊥OE、BC⊥CD,則四邊形ABCD是矩形,
∵CD∩BC=C,∴OE⊥平面ABCD,
∵△ODC的面積S= =6,
∴6= = ,得OE= ,
∴此四棱錐O﹣ABCD的體積V= = =16,
故選:B.
【考點精析】通過靈活運用由三視圖求面積、體積,掌握求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個側(cè)面的面積即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是首項為15的等比數(shù)列,其前n項的和為Sn , 若S3 , S5 , S4成等差數(shù)列,則公比q= , 當(dāng){an}的前n項的積達到最大時n的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,關(guān)于x的方程f2(x)﹣2af(x)+a﹣1=0(a∈R)有四個相異的實數(shù)根,則a的取值范圍是( )
A.(﹣1, )
B.(1,+∞)
C.( ,2)
D.( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2, .
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點,求二面角A﹣EC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知sin2 +cos2A= .
(1)求A的值;
(2)若a= ,求bc的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=3sin(4x+ )圖象上所有點的橫坐標(biāo)伸長到原來的2倍,再向右平移 個單位長度,得到函數(shù)y=g(x)的圖象,則y=g(x)圖象的一條對稱軸是( )
A.x=
B.x=
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2x+alnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)t≥1時,不等式f(2t﹣1)≥2f(t)﹣3恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來共享單車在我國主要城市發(fā)展迅速.目前市場上有多種類型的共享單車,有關(guān)部門對其中三種共享單車方式(M方式、Y方式、F方式)進行統(tǒng)計(統(tǒng)計對象年齡在15~55歲),相關(guān)數(shù)據(jù)如表1,表2所示. 三種共享單車方式人群年齡比例(表1)
方式 | M | Y | F |
[15,25) | 25% | 20% | 35% |
[25,35) | 50% | 55% | 25% |
[35,45) | 20% | 20% | 20% |
[45,55] | 5% | a% | 20% |
不同性別選擇共享單車種類情況統(tǒng)計(表2)
性別 | 男 | 女 |
1 | 20% | 50% |
2 | 35% | 40% |
3 | 45% | 10% |
(Ⅰ)根據(jù)表1估算出使用Y共享單車方式人群的平均年齡;
(Ⅱ)若從統(tǒng)計對象中隨機選取男女各一人,試估計男性使用共享單車種類數(shù)大于女性使用共享單車種類數(shù)的概率;
(Ⅲ)現(xiàn)有一個年齡在25~35歲之間的共享單車用戶,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,試問此結(jié)論是否正確?(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某飛行器在4千米高空飛行,從距著陸點A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為( )
A.y= ﹣ x
B.y= x3﹣ x
C.y= x3﹣x
D.y=﹣ x3+ x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com