14.(1)已知f(1-$\sqrt{x}$)=x,求f(x)的解析式;
(2)已知一次函數(shù)y=f(x)滿足f(f(x))=4x+3,求f(x)的解析式.

分析 (1)利用換元法,求解即可.
(2)利用待定系數(shù)法,設出f(x)=kx+b,帶入化簡,系數(shù)相等,求解k,b的值.可得f(x)的解析式.

解答 解:(1)函數(shù)f(1-$\sqrt{x}$)=x,
令t=1-$\sqrt{x}$,(t≤1)則:x=(1-t)2
那么:f(1-$\sqrt{x}$)=x轉(zhuǎn)化為:g(t)=(1-t)2
即f(x)=(1-x)2,(x≤1)
故得f(x)的解析式為f(x)=x2-2x+1,(x≤1)
(2)由題意:已知一次函數(shù)y=f(x),
設f(x)=kx+b,(k≠0),
則:f(f(x))=k(kx+b)+b=4x+3,
由$\left\{\begin{array}{l}{{k}^{2}=4}\\{kb+b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=2}\\{b=1}\end{array}\right.$或$\left\{\begin{array}{l}{k=-2}\\{b=-3}\end{array}\right.$
故得f(x)的解析式為:f(x)=2x+1或f(x)=-2x-3.

點評 本題考查了解析式的求法,利用了換元法和待定系數(shù)法求解.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=ax2(a∈R),g(x)=2lnx.
(1)討論函數(shù)F(x)=f(x)-g(x)的單調(diào)性;
(2)若方程f(x)=g(x)在區(qū)間[${\sqrt{2}$,e]上有兩個不等實數(shù)根,求實數(shù)a的取值范圍.
(可能用到的參考數(shù)據(jù):ln2≈0.7,$\frac{1}{e^2}$≈0.135).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知$\overline{a}$=(-1,2),$\overrightarrow$=(m2-2,2m),若$\overrightarrow{a}$與$\overrightarrow$共線且方向相反,則m的值為( 。
A.1 或-2B.2C.-2D.-1或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,則該顧客在3次抽獎中至多有兩次獲得一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=loga(x-1),g(x)=loga(4-2x)(a>0且a≠1).
(Ⅰ)求函數(shù)f(x)-g(x)的定義域;
(Ⅱ)若f(x)>g(x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知點A(3,2),F(xiàn)是拋物線y2=2x的焦點.點M在拋物線上移動時,|MA|+|MF|取得最小值時M點的坐標為(  )
A.(0,0)B.($\frac{1}{2}$,1)C.(1,$\sqrt{2}$)D.(2,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設p:實數(shù)a滿足不等式3a≤9,q:函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{{3({3-a})}}{2}$x2+9x無極值點.
(1)若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)a的取值范圍;
(2)已知“p∧q”為真命題,并記為r,且t:a2-(2m+$\frac{1}{2}}$)a+m(m+$\frac{1}{2}}$)>0,若r是¬t的必要不充分條件,求正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設定義在R上的偶函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(2-t),且x∈[0,1]時,f(x)=-ln(x2+e),則f(2017)的值等于( 。
A.-ln(e+1)B.-ln(4+e)C.-1D.-ln(e+$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知等差數(shù)列{an}的前n項和Sn能取到最大值,且滿足:a10+a11<0,a10•a11<0對于以下幾個結論:
①數(shù)列{an}是遞減數(shù)列;    
②數(shù)列{Sn}是遞減數(shù)列;
③數(shù)列{Sn}的最大項是S10; 
④數(shù)列{Sn}的最小的正數(shù)是S19
其中正確的序號是①③④.

查看答案和解析>>

同步練習冊答案