已知函數(shù)時都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍。

(1)函數(shù)的遞增區(qū)間是,遞減區(qū)間是;
(2)

解析試題分析:解:(1)

,函數(shù)的單調(diào)區(qū)間如表:

 




 

 


 


 
 

­
極大值
¯
極小值
­
所以函數(shù)的遞增區(qū)間是,遞減區(qū)間是;
(2),當(dāng)時,
為極大值,而,則為最大值,要使
恒成立,則只需要,得。
考點:導(dǎo)數(shù)的運用
點評:主要是考查了導(dǎo)數(shù)的運用來求解單調(diào)性和最值的運用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)有兩個零點,求正實數(shù)a的取值范圍;(Ⅲ)求證:當(dāng)時,.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)="|2x-1|+|2x-3|" , x∈R.
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的極值;
(Ⅱ)當(dāng)時,討論函數(shù)的單調(diào)性.
(Ⅲ)若對任意及任意,恒有 成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)若不等式的解集為,求實數(shù)的值;
(2)在(1)的條件下,若存在實數(shù)n使成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù) 
(1)畫出函數(shù)的圖象;
(2)若不等式 恒成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上的增函數(shù),,
(Ⅰ)若,求證:;
(Ⅱ)判斷(Ⅰ)中命題的逆命題是否成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù)且是減函數(shù),若,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若是偶函數(shù),在定義域上恒成立,求實數(shù)的取值范圍;
(2)當(dāng)時,令,問是否存在實數(shù),使上是減函數(shù),在上是增函數(shù)?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案