【題目】已知點(diǎn),,動(dòng)點(diǎn)滿足直線的斜率之積為,記的軌跡為曲線.

1)求的方程,并說明是什么曲線;

2)過坐標(biāo)原點(diǎn)的直線交、兩點(diǎn),點(diǎn)在第一象限,軸,垂足為,連結(jié)并延長(zhǎng)交于點(diǎn),

①證明:是直角三角形;

②求面積的最大值.

【答案】1,曲線為中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓,不含左右頂點(diǎn);(2)①證明見解析;②.

【解析】

1)利用列方程,化簡(jiǎn)后求得的方程,并判斷出是何種曲線.

2)①通過計(jì)算,由此證得為直角三角形.

②利用弦長(zhǎng)公式,計(jì)算出,利用三角形面積公式求得面積,進(jìn)而求得面積的最大值.

1,依題意,即,化簡(jiǎn)得.曲線為中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓,不含左右頂點(diǎn).

2)①依題意可知,直線的斜率存在且不為零.

設(shè)直線的方程為,與曲線的方程聯(lián)立得,消去.由于在第一象限,故

.

由于軸,垂直為點(diǎn),所以,.

,

,消去,所以,而,所以,.

所以.所以,所以為直角三角形.

②由①知,為直角三角形,且,所以.

,

,

所以

,所以.所以當(dāng),即時(shí),取得最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐三彩,中國(guó)古代陶瓷燒制工藝的珍品,它吸取了中國(guó)國(guó)畫、雕塑等工藝美術(shù)的特點(diǎn),在中國(guó)文化中占有重要的歷史地位,在中國(guó)的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有多年的歷史,對(duì)唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史.某陶瓷廠在生產(chǎn)過程中,對(duì)仿制的件工藝品測(cè)得重量(單位:)數(shù)據(jù)如下表:

分組

頻數(shù)

頻率

合計(jì)

(1)求出頻率分布表中實(shí)數(shù),的值;

(2)若從仿制的件工藝品重量范圍在的工藝品中隨機(jī)抽選件,求被抽選件工藝品重量均在范圍中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若實(shí)數(shù)滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】焦點(diǎn)在軸上的橢圓經(jīng)過點(diǎn),橢圓的離心率為是橢圓的左、右焦點(diǎn),為橢圓上任意點(diǎn).

1)若面積為,求的值;

2)若點(diǎn)的中點(diǎn)(為坐標(biāo)原點(diǎn)),過且平行于的直線交橢圓兩點(diǎn),是否存在實(shí)數(shù),使得;若存在,請(qǐng)求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列問題中,是不相等的正數(shù),比較的表達(dá)式,下列選項(xiàng)正確的是(

問題甲:一個(gè)直徑寸的披薩和一個(gè)直徑 寸的披薩,面積和等于兩個(gè)直徑都是寸的披薩;

問題乙:某人散步,第一圈的速度是,第二圈的速度是,這兩圈的平均速度為;

問題丙:將一物體放在兩臂不等長(zhǎng)的天平測(cè)量,放在左邊時(shí)砝碼質(zhì)量為(天平平衡),放在右邊時(shí)左邊砝碼質(zhì)量為,物體的實(shí)際質(zhì)量為.

A.B.C.D.互不相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年9月支付寶宣布在肯德基的KPRO餐廳上線刷臉支付,也即用戶可以不用手機(jī),單單通過刷臉就可以完成支付寶支付,這也是刷臉支付在全球范圍內(nèi)的首次商用試點(diǎn).某市隨機(jī)抽查了每月用支付寶消費(fèi)金額不超過3000元的男女顧客各300人,調(diào)查了他們的支付寶使用情況,得到如下頻率分布直方圖:

若每月利用支付寶支付金額超過2千元的顧客被稱為“支付寶達(dá)人”, 利用支付寶支付金額不超過2千元的顧客稱為“非支付寶達(dá)人”.

(I)若抽取的“支付寶達(dá)人”中女性占120人,請(qǐng)根據(jù)條件完成上面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“支付寶達(dá)人”與性別有關(guān).

(II)支付寶公司為了進(jìn)一步了解這600人的支付寶使用體驗(yàn)情況和建議,從“非支付寶達(dá)人” “支付寶達(dá)人”中用分層抽樣的方法抽取8人.若需從這8人中隨機(jī)選取2人進(jìn)行問卷調(diào)查,求至少有1人是“支付寶達(dá)人”的概率.

附:參考公式與參考數(shù)據(jù)如下

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測(cè)驗(yàn)中,某班40名考生的成績(jī)滿分100分統(tǒng)計(jì)如圖所示.

(Ⅰ)估計(jì)這40名學(xué)生的測(cè)驗(yàn)成績(jī)的中位數(shù)精確到0.1;

(Ⅱ)記80分以上為優(yōu)秀,80分及以下為合格,結(jié)合頻率分布直方圖完成下表,并判斷是否有95%的把握認(rèn)為數(shù)學(xué)測(cè)驗(yàn)成績(jī)與性別有關(guān)?

合格

優(yōu)秀

合計(jì)

男生

16

女生

4

合計(jì)

40

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且.

(1) 證明數(shù)列是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;

(2) ,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各項(xiàng)均為正數(shù)的數(shù)列{an}的首項(xiàng),前n項(xiàng)和為Sn,且Sn1Snλ..

(1){an}的通項(xiàng)公式;

(2)若數(shù)列{bn}滿足bnλnan,求{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案