【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當a>0時,求函數(shù)f(x)的單調區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
【答案】(1)見解析(2)5.
【解析】試題分析:(1)先求導數(shù),轉化研究二次函數(shù)符號變化規(guī)律:當判別式非正時,導函數(shù)不變號;當判別式大于零時,定義域上有兩個根 ,導函數(shù)符號先負再正再負(2)先利用參變分離法化簡不等式得,轉化求函數(shù)最小值,利用導數(shù)可得有唯一極小值,也是最小值,再根據(jù)極點條件求最小值取值范圍,進而可得a的最小值.
試題解析: 解 (1)f′(x)=,x>-1.
當a≥時,f′(x)≤0,∴f(x)在(-1,+∞)上單調遞減.
當0<a<時,
當-1<x<時,f′(x)<0,f(x)單調遞減;
當<x<時,f′(x)>0,f(x)單調遞增;
當x>時,f′(x)<0,f(x)單調遞減.
綜上,當a≥時,f(x)的單調遞減區(qū)間為(-1,+∞);
當0<a<時,f(x)的單調遞減區(qū)間為,,
f(x)的單調遞增區(qū)間為.
(2)原式等價于ax>(x+1)ln (x+1)+2x+1,
即存在x>0,使成立.
設,x>0,
則,x>0,
設h(x)=x-1-ln (x+1),x>0,
則h′(x)=1->0,∴h(x)在(0,+∞)上單調遞增.
又h(2)<0,h(3)>0,根據(jù)零點存在性定理,可知h(x)在(0,+∞)上有唯一零點,設該零點為x0,則x0-1=ln (x0+1),且x0∈(2,3),
∴
又a>x0+2,a∈Z,∴a的最小值為5.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是邊長為的正方形,為的中點,以為折痕把折起,使點到達點的位置,且二面角為直二面角,連結.
(1)記平面與平面相較于,在圖中作出,并說明畫法;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新高考改革后,國家只統(tǒng)一考試數(shù)學和語文,英語學科改為參加等級考試,每年考兩次,分別放在每個學年的上、下學期,物理、化學、生物、地理、歷史、政治這六科則以該省的省會考成績?yōu)闇?/span>.考生從中選擇三科成績,參加大學相關院系的錄取.
(1)若英語等級考試成績有一次為優(yōu),即可達到某211院校的錄取要求.假設某個學生參加每次等級考試事件是獨立的,且該生英語等級考試成績?yōu)閮?yōu)的概率都是,求該生在高二上學期的英語等級考試成績才為優(yōu)的概率;
(2)據(jù)預測,要想報考該211院校的相關院系,省會考的成績至少在90分以上,才有可能被該校錄取.假設該生在省會考六科的成績,考到90分以上概率都是,設該生在省會考時考到90分以上的科目數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市一調查機構針對該市市場占有率最高的甲、乙兩家網絡外賣企業(yè)以下簡稱外賣甲,外賣乙的經營情況進行了調查,調查結果如表:
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
外賣甲日接單x(百單 | 5 | 2 | 9 | 8 | 11 |
外賣乙日接單y(百單 | 2.2 | 2.3 | 10 | 5 | 15 |
(Ⅰ)據(jù)統(tǒng)計表明,y與x之間具有線性相關關系.經計算求得y與x之間的回歸方程為,假定每單外賣業(yè)務企業(yè)平均能獲純利潤3元,試預測當外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍;(x值精確到0.01)
(Ⅱ)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經營狀況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列選項中,說法正確的是( )
A.命題“,”的否定為“,”;
B.命題“在中,,則”的逆否命題為真命題;
C.已知、m是兩條不同的直線,是個平面,若,則;
D.已知定義在R上的函數(shù),則“為奇函數(shù)”是“”的充分必要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《高中數(shù)學課程標準》(2017 版)規(guī)定了數(shù)學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數(shù)學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結果繪制了雷達圖(如圖,每項指標值滿分為分,分值高者為優(yōu)),則下面敘述正確的是( )
(注:雷達圖(Radar Chart),又可稱為戴布拉圖、蜘蛛網圖(Spider Chart),可用于對研究對象的多維分析)
A.甲的數(shù)據(jù)分析素養(yǎng)高于乙
B.甲的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)
C.乙的六大素養(yǎng)中邏輯推理最差
D.乙的六大素養(yǎng)整體水平優(yōu)于甲
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于分”,估計的概率;
(3)在抽取的名學生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“比賽成績是否優(yōu)秀與性別有關”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在等比數(shù)列{an}中,a1=2,且a1,a2,a3-2成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com