分析 (1)直接根據(jù)Sn+an=$\frac{{n}^{2}+1}{{n}^{2}+n}$求得a1,a2,a3;
(2)觀察前三項(xiàng),猜得an=$\frac{1}{n(n+1)}$,再用數(shù)學(xué)歸納法證明;
(3)將an=$\frac{1}{n(n+1)}$代入求極限.
解答 解:(1)根據(jù)Sn+an=$\frac{{n}^{2}+1}{{n}^{2}+n}$.得S1+a1=1,所以,a1=$\frac{1}{2}$,
所以,a2=$\frac{1}{6}$,a3=$\frac{1}{12}$,a4=$\frac{1}{20}$;
(2)由(1)可以猜測(cè)an=$\frac{1}{n(n+1)}$,下面用數(shù)學(xué)歸納法證明,
①當(dāng)n=1時(shí),左邊=Sn+an=$\frac{1}{2}$+$\frac{1}{2}$=1,右邊=$\frac{{n}^{2}+1}{{n}^{2}+n}$=1,猜測(cè)成立;
②假設(shè)當(dāng)n=k(k∈N*)時(shí)猜測(cè)成立,即ak=$\frac{1}{k(k+1)}$,Sk=$\frac{k^2+1}{k^2+k}$-ak,
則當(dāng)n=k+1時(shí),Sk+1+ak+1=Sk+2ak+1=$\frac{(k+1)^2+1}{(k+1)^2+(k+1)}$,
即2ak+1=$\frac{(k+1)^2+1}{(k+1)^2+(k+1)}$-$\frac{k^2+1}{k^2+k}$,
解得ak+1=$\frac{1}{(k+1)(k+2)}$,
所以,n=k+1時(shí),猜測(cè)成立,
綜合①②得,對(duì)全體正整數(shù)n都有an=$\frac{1}{n(n+1)}$;
(3)因?yàn)閍n=$\frac{1}{n(n+1)}$,所以,
$\underset{lim}{n→∞}$(n2•an)=$\underset{lim}{n→∞}$$\frac{n^2}{n(n+1)}$=$\underset{lim}{n→∞}$$\frac{n}{n+1}$=1.
點(diǎn)評(píng) 本題主要考查了運(yùn)用歸納推理的方法得出數(shù)列的通項(xiàng)公式,再用數(shù)學(xué)歸納法證明,以及數(shù)列極限的解法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,1) | B. | (-1,1) | C. | (1,-1) | D. | (-1,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2} | B. | {0,1} | C. | {0,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com