一同學(xué)在電腦中打出如下若干分圈:…若將此若干個圈依次規(guī)律繼續(xù)下去,得到一系列的圈,那么在前120個圈中的●的個數(shù)是
 
考點:歸納推理
專題:規(guī)律型
分析:把每個實心圓和它前面的連續(xù)的空心圓看成一組,那么每組圓的總個數(shù)就等于2,3,4,…所以這就是一個等差數(shù)列.根據(jù)等差數(shù)列的求和公式可以算出第120個圓在第15組,且第120個圓不是實心圓,所以前120個圓中有14個實心圓.
解答: 解:將圓分組:
第一組:○●,有2個圓;
第二組:○○●,有3個圓;
第三組:○○○●,有4個圓;

每組圓的總個數(shù)構(gòu)成了一個等差數(shù)列,前n組圓的總個數(shù)為
sn=2+3+4+…+(n+1)=
2+n+1
2
×n,
令sn=120,
解得n≈14.1,
即包含了14整組,
即有14個黑圓,
故答案為14.
點評:解題的關(guān)鍵是找出圖形的變化規(guī)律,構(gòu)造等差數(shù)列,然后利用等差數(shù)列的求和公式計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-2ax-a,(a∈R)
(1)解不等式f(x)>0;
(2)函數(shù)f(x)在[-1,1]上有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

全集S={0,1,3,5,7,9},∁SA={0,5,9},B={3,5,7},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從等式12=1,22=1+3,32=1+3+5,42=1+3+5+7得到的一般規(guī)律為n2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在橢圓
x2
a2
+
y2
b2
=1(a>b>0)中F,A,B分別為其左焦點,右頂點,上頂點,O為坐標(biāo)原點,M為線段OB的中點,若△FMA為直角三角形,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
9
-
y2
16
=1上一點P到焦點F1的距離為8,則P到焦點F2的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)安排甲、乙、丙、丁、戊5名同學(xué)參加某志愿者服務(wù)活動,每人從事翻譯、導(dǎo)游、禮儀、司機(jī)四項工作之一,每項工作至少有1人參加.甲、乙不會開車但能從事其他三項工作,丙、丁、戊都能勝任四項工作,則不同安排方案的總數(shù)為
 
(填數(shù)字)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x+
π
3
)的圖象至少向左平移
 
單位所得的圖象對應(yīng)的函數(shù)為y=cos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax(e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)a=2時,求曲線f(x)在點(0,f(0)處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)已知函數(shù)f(x)在x=0處取得極小值,不等式f(x)<mx的解集為P,若M={x|
1
2
≤x≤2},且M∩P≠∅,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案