【題目】直角坐標(biāo)系xoy中,橢圓的離心率為,過點(diǎn).
(1)求橢圓C的方程;
(2)已知點(diǎn)P(2,1),直線與橢圓C相交于A,B兩點(diǎn),且線段AB被直線OP平分.
①求直線的斜率;②若,求直線的方程.
【答案】(1) .
(2) ①直線的斜率為除以外的任意實(shí)數(shù).
②.
【解析】分析:(1)由離心率條件得,然后將點(diǎn).代入原式得到第二個(gè)方程,聯(lián)立求解即可;(2)①先得出OP的方程,然后根據(jù)點(diǎn)差法研究即可;②先表示出,然后聯(lián)立直線和橢圓根據(jù)韋達(dá)定理代入等式求解即可.
詳解:
(1)由可得,
設(shè)橢圓方程為,代入點(diǎn),得,
故橢圓方程為:.
(2)①由條件知,
設(shè),則滿足,,
兩式作差得:,
化簡得,
因?yàn)?/span>被平分,故,
當(dāng)即直線不過原點(diǎn)時(shí),,所以;
當(dāng)即直線過原點(diǎn)時(shí),,為任意實(shí)數(shù),但時(shí)與重合;
綜上即直線的斜率為除以外的任意實(shí)數(shù).
②當(dāng)時(shí),,故 ,
得,聯(lián)立,得,舍去;
當(dāng)時(shí),設(shè)直線為,代入橢圓方程可得,(#)
所以,,
,
,
故
解得,此時(shí)方程(#)中,
故所求直線方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,兩個(gè)頂點(diǎn)分別為,.過點(diǎn)的直線交橢圓于,兩點(diǎn),直線與的交點(diǎn)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:點(diǎn)在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程選講]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)).(10分)
(1)若a=﹣1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l距離的最大值為 ,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: ,點(diǎn)為的左焦點(diǎn),點(diǎn)為上位于第一象限內(nèi)的點(diǎn),關(guān)于原點(diǎn)的對稱點(diǎn)為,,,則的離心率為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: ,點(diǎn)為的左焦點(diǎn),點(diǎn)為上位于第一象限內(nèi)的點(diǎn),關(guān)于原點(diǎn)的對稱點(diǎn)為,,,則的離心率為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C: +y2=1上,過M做x軸的垂線,垂足為N,點(diǎn)P滿足 = .
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)點(diǎn)Q在直線x=﹣3上,且 =1.證明:過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax.
(1)若函數(shù)f(x)在x=3處取得極值,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若a> ,函數(shù)y=f(x)在[0,2a]上的最小值是﹣a2 , 求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( )
A.?x0∈R,使得e ≤0
B.
C.?x∈R,2x>x2
D.a>1,b>1是ab>1的充分不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com