【題目】已知雙曲線 ,點(diǎn)的左焦點(diǎn),點(diǎn)上位于第一象限內(nèi)的點(diǎn),關(guān)于原點(diǎn)的對稱點(diǎn)為,,,則的離心率為(  )

A. B. C. D.

【答案】B

【解析】

由題意可知:四邊形PFQF1為平行四邊,利用雙曲線的定義及性質(zhì),求得∠OPF1=90°,在QPF1中,利用勾股定理即可求得ab的關(guān)系,根據(jù)雙曲線的離心率公式即可求得離心率e

由題意可知:雙曲線的右焦點(diǎn)F,由P關(guān)于原點(diǎn)的對稱點(diǎn)為Q,

∴四邊形PFQF1為平行四邊形

|PF1|=3|F1Q|,根據(jù)雙曲線的定義- =2a,

=a,∵|OP|=b,=c,∴∠OPF=90°,

QPF中, =2b, =3a, =a,

∴則(2b)2+a2=(3a)2,整理得:b2=2a2

則雙曲線的離心率 故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1:y=cosx,C2:y=sin(2x+ ),則下面結(jié)論正確的是( 。
A.把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個(gè)單位長度,得到曲線C2
B.把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移 個(gè)單位長度,得到曲線C2
C.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個(gè)單位長度,得到曲線C2
D.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個(gè)單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,函數(shù),

.

(1)當(dāng)時(shí),求的值;

(2)若的最小值為,求實(shí)數(shù)的值;

(3)是否存在實(shí)數(shù),使函數(shù),有四個(gè)不同的零點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A.1盞
B.3盞
C.5盞
D.9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系xoy中,橢圓的離心率為過點(diǎn).

(1)求橢圓C的方程;

(2)已知點(diǎn)P(2,1),直線與橢圓C相交于A,B兩點(diǎn),且線段AB被直線OP平分.

①求直線的斜率;②若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中點(diǎn).
(Ⅰ)證明:直線CE∥平面PAB;
(Ⅱ)點(diǎn)M在棱PC 上,且直線BM與底面ABCD所成角為45°,求二面角M﹣AB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,a3+b3=2,證明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解市民對某項(xiàng)政策的態(tài)度,隨機(jī)抽取了男性市民25人,女性市民75人進(jìn)行調(diào)查,得到以下的列聯(lián)表:

支持

不支持

合計(jì)

男性

20

5

25

女性

40

35

75

合計(jì)

60

40

100

根據(jù)以上數(shù)據(jù),能否有97.5%的把握認(rèn)為市民“支持政策”與“性別”有關(guān)?

將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有市民中,采用隨機(jī)抽樣的方法抽取4位市民進(jìn)行長期跟蹤調(diào)查,記被抽取的4位市民中持“支持”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學(xué)期望。

附:.

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.

查看答案和解析>>

同步練習(xí)冊答案