已知橢圓的左右兩焦點(diǎn)分別為,是橢圓上一點(diǎn),且在軸上方,

(1)求橢圓的離心率的取值范圍;
(2)當(dāng)取最大值時(shí),過的圓的截軸的線段長為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準(zhǔn)線上任一點(diǎn)引圓的兩條切線,切點(diǎn)分別為.試探究直線是否過定點(diǎn)?若過定點(diǎn),請求出該定點(diǎn);否則,請說明理由.
(1);(2);(3).

試題分析:(1)由,,.即可求得的取值范圍.
(2)由(1)可得.以及是圓的直徑可得.即可求出橢圓的方程.
(3)由(2)可得圓Q的方程.切點(diǎn)M,N所在的圓的方程上任一點(diǎn)坐標(biāo)為P(x,y).由.即得.則M,N所在的直線方程為.兩圓方程對減即可得到.根據(jù)過定點(diǎn)的知識即可求出定點(diǎn).本題涉及的知識點(diǎn)較多,滲透方程的思想,加強(qiáng)對幾何圖形的關(guān)系理解.
試題解析: , ∴
(1),∴,在上單調(diào)遞減.
時(shí),最小,時(shí),最大,∴,∴
(2)當(dāng)時(shí),,∴,∴
,∴是圓的直徑,圓心是的中點(diǎn),∴在y軸上截得的弦長就是直徑,∴=6.又,∴.∴橢圓方程是    10分
(3)由(2)得到,于是圓心,半徑為3,圓的方程是.橢圓的右準(zhǔn)線方程為,,∵直線AM,AN是圓Q的兩條切線,∴切點(diǎn)M,N在以AQ為直徑的圓上.設(shè)A點(diǎn)坐標(biāo)為,∴該圓方程為.∴直線MN是兩圓的公共弦,兩圓方程相減得:,這就是直線MN的方程.該直線化為:
∴直線MN必過定點(diǎn).                     16分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn),離心率為
(1)求橢圓C的方程:
(2)過點(diǎn)Q(1,0)的直線l與橢圓C相交于A、B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1,k2,當(dāng)k1·k2最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義:對于兩個雙曲線,,若的實(shí)軸是的虛軸,的虛軸是的實(shí)軸,則稱,為共軛雙曲線.現(xiàn)給出雙曲線和雙曲線,其離心率分別為.
(1)寫出的漸近線方程(不用證明);
(2)試判斷雙曲線和雙曲線是否為共軛雙曲線?請加以證明.
(3)求值:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點(diǎn).
(1)如果直線l過拋物線的焦點(diǎn),求·的值;
(2)如果·=-4,證明直線l必過一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,長軸長為,直線交橢圓于不同的兩點(diǎn)
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經(jīng)過橢圓上的點(diǎn),求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左焦點(diǎn)為,離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為
(1)求橢圓方程;
(2)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積最大時(shí),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別是、,下頂點(diǎn)為,線段的中點(diǎn)為為坐標(biāo)原點(diǎn)),如圖.若拋物線軸的交點(diǎn)為,且經(jīng)過、兩點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),為拋物線上的一動點(diǎn),過點(diǎn)作拋物線的切線交橢圓、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)AB是橢圓的長軸,點(diǎn)C在橢圓上,且,若AB=4,,則橢圓的兩個焦點(diǎn)之間的距離為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以拋物線的焦點(diǎn)為圓心,且與雙曲線的兩條漸近線都相切的圓的方程為        .

查看答案和解析>>

同步練習(xí)冊答案