在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點.
(1)如果直線l過拋物線的焦點,求·的值;
(2)如果·=-4,證明直線l必過一定點,并求出該定點.
(1);(2)過定點

試題分析:拋物線的焦點在軸上,直線過焦點且與拋物線相交,這條直線可能與垂直,但不可能與垂直,因此這種直線方程可設(shè)為的形式,可避免討論斜率存在不存在的問題。直線與拋物線相交于兩點,我們一般設(shè),則,而這里的,可以讓直線方程和拋物線方程聯(lián)立方程組得出。(1)中直線方程可設(shè)為,(2)中直線方程可設(shè)為,(2)與(1)的區(qū)別在于最后令,求出。
試題解析:(1)由題意:拋物線焦點為,
設(shè),代入拋物線方程中得,
,
設(shè),則,


(2)設(shè),代入拋物線方程中得,
,
設(shè),則,


,∴,
∴直線過定點,∴若,則直線必過一定點。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的長軸為AB,過點B的直線
軸垂直,橢圓的離心率,F為橢圓的左焦點,且

(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點, 軸,H為垂足,延長HP到點Q,使得HP=PQ,連接AQ并延長交直線于點,的中點,判定直線與以為直徑的圓O位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知定點、,動點N滿足(O為坐標(biāo)原點),,,,求點P的軌跡方程.

(2)如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,

(ⅰ)設(shè)直線的斜率分別為、,求證:為定值;
(ⅱ)當(dāng)點運動時,以為直徑的圓是否經(jīng)過定點?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右兩焦點分別為,是橢圓上一點,且在軸上方,

(1)求橢圓的離心率的取值范圍;
(2)當(dāng)取最大值時,過的圓的截軸的線段長為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準(zhǔn)線上任一點引圓的兩條切線,切點分別為.試探究直線是否過定點?若過定點,請求出該定點;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦點為,,且經(jīng)過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過的直線與橢圓交于、兩點,問在橢圓上是否存在一點,使四邊形為平行四邊形,若存在,求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知頂點在原點,焦點在軸上的拋物線過點.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線交于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的離心率為,以橢圓的左頂點為圓心作圓,設(shè)圓與橢圓交于點與點.(12分)

(1)求橢圓的方程;(3分)
(2)求的最小值,并求此時圓的方程;(4分)
(3)設(shè)點是橢圓上異于,的任意一點,且直線分別與軸交于點,為坐標(biāo)原點,求證:為定值.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點,離心率為,過點的直線與橢圓交于不同的兩點
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的左焦點為F1,左、右頂點分別為A1、A2,P為雙曲線上任意一點,則分別以線段PF1,A1A2為直徑的兩個圓的位置關(guān)系為(   )
A.相交B.相切C.相離D.以上情況都有可能

查看答案和解析>>

同步練習(xí)冊答案