8.若曲線y=1+logax(a>0且a≠1)在點(diǎn)(1,1)處的切線經(jīng)過(guò)坐標(biāo)原點(diǎn),則a=e.

分析 求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由兩直線垂直的條件,可得a的方程,即可求得a,

解答 解:∵y=1+logax,
∴y′=$\frac{1}{xlna}$,
∴y′|x=1=$\frac{1}{lna}$,
∵曲線y=1+logax(a>0且a≠1)在點(diǎn)(1,1)處的切線方程為y-1=$\frac{1}{lna}$(x-1),
∵曲線y=1+logax(a>0且a≠1)在點(diǎn)(1,1)處的切線經(jīng)過(guò)坐標(biāo)原點(diǎn),
∴0-1=$\frac{1}{lna}$(0-1),∴a=e
故答案為e.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)處的切線方程的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,已知BC是⊙O的直徑,A是⊙O上一點(diǎn),過(guò)點(diǎn)A作⊙O的切線交BC的延長(zhǎng)線于點(diǎn)P,∠APB的平分線分別交AB,AC于點(diǎn)E,D.
(Ⅰ)證明:AE=AD;
(Ⅱ)若AC=CP,求$\frac{PC}{PA}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知A(2,0),M是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(其中a>1)的右焦點(diǎn),P是橢圓C上的動(dòng)點(diǎn).
(Ⅰ)若M與A重合,求橢圓C的離心率;
(Ⅱ)若a=3,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)命題p:-1<log${\;}_{\frac{1}{2}}$x<0,q:2x>1,則p是q成立的是( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.以圍墻為一邊,用籬笆圍成長(zhǎng)方形的場(chǎng)地(如圖),已知籬笆長(zhǎng)為定值12.
(1)寫出場(chǎng)地面積y與邊長(zhǎng)x的函數(shù);
(2)指出函數(shù)的定義域;
(3)這塊地長(zhǎng)寬各為多少時(shí),場(chǎng)地的面積最大?最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,A,B,C,D是平面直角坐標(biāo)系上的四個(gè)點(diǎn),將這四個(gè)點(diǎn)的坐標(biāo)(x,y)分別代入x-y=k,若在某點(diǎn)處k取得最大值,則該點(diǎn)是( 。
A.點(diǎn)AB.點(diǎn)BC.點(diǎn)CD.點(diǎn)D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=x2-4x+3-2lnx的零點(diǎn)個(gè)數(shù)為  ( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知直線l1:x-2y-1=0,直線l2:ax+by-1=0,其中a,b∈{1,2,3,4,5,6},則l1⊥l2的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{12}$C.$\frac{1}{18}$D.$\frac{5}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知位置向量$\overrightarrow{OA}$=(log2(m2+3m-8),log2(2m-2)),$\overrightarrow{OB}$=(1,0),若以O(shè)A、OB為鄰邊的平行四邊形OACB的頂點(diǎn)C在函數(shù)y=$\frac{1}{2}$x的圖象上,則實(shí)數(shù)m=2或5.

查看答案和解析>>

同步練習(xí)冊(cè)答案