已知f(x)=lnx+2-x,若x>0,f(x)<a2恒成立,則實(shí)數(shù)a的取值范圍是________.

(-∞,-1)∪(1,+∞)
分析:若x>0,f(x)<a2恒成立等價(jià)于:若x>0,f(x)max<a2.利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,極值點(diǎn),從而確定函數(shù)的最值,進(jìn)而解不等式即可.
解答:由題意,若x>0,f(x)<a2恒成立等價(jià)于:若x>0,f(x)max<a2
,當(dāng)0<x<1時(shí),f′(x)>0,當(dāng)x>1時(shí),f(x)<0
∴x=1時(shí),f(x)取得最大值1
∴1<a2
∴a<-1或a>1
故答案為:(-∞,-1)∪(1,+∞)
點(diǎn)評(píng):本題的考點(diǎn)是函數(shù)恒成立問(wèn)題,考查利用最值法解決恒成立問(wèn)題,考查利用導(dǎo)數(shù)求函數(shù)的最值,其中x>0,f(x)<a2恒成立轉(zhuǎn)化為:若x>0,f(x)max<a2是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(0,+∞)上的三個(gè)函數(shù)f(x)、g(x)、h(x),已知f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1處取得極值.
(1)求a的值及h(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)1<x<e2時(shí),恒有x<
2+f(x)
2-f(x)
;
(3)把h(x)對(duì)應(yīng)的曲線C1向上平移6個(gè)單位后得到曲線C2,求C2與g(x)對(duì)應(yīng)曲線C3的交點(diǎn)的個(gè)數(shù),并說(shuō)明道理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx,g(x)=x+
a
x
(a∈R).
(1)求f(x)-g(x)的單調(diào)區(qū)間;
(2)若x≥1時(shí),f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)n∈N*,n≥2時(shí),證明:
ln2
3
ln3
4
•…•
lnn
n+1
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx-
a
x

(Ⅰ)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;
(Ⅱ)若f(x)<x2在(1,+∞)上恒成立,試求a的取值范圍;
(Ⅲ)若f(x)在[1,e]上的最小值為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx,g(x)=x2-x,
(1)求函數(shù)h(x)=f(x)-g(x)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[-2,0]時(shí),g(x)≤2c2-c-x3恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx+cosx,則f(x)在x=
π2
處的導(dǎo)數(shù)值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案