【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

試銷單價(jià)(元)

4

5

6

7

8

9

產(chǎn)品銷量(件)

q

84

83

80

75

68

已知,.

(Ⅰ)求出的值;

(Ⅱ)已知變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(元)的線性回歸方程;

(Ⅲ)用表示用(Ⅱ)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取2個(gè),求“好數(shù)據(jù)”至少有一個(gè)的概率.

(參考公式:線性回歸方程中的最小二乘估計(jì)分別為,

【答案】(Ⅰ);(Ⅱ);(Ⅲ)

【解析】

(Ⅰ)利用平均數(shù)求出即可;

(Ⅱ)參考公式求解線性回歸方程即可得解;

(Ⅲ)結(jié)合(Ⅱ),滿足的共有3個(gè)“好數(shù)據(jù)”,又從6個(gè)銷售數(shù)據(jù)中任取2個(gè),共有種不同的取法,利用概率公式運(yùn)算即可.

(Ⅰ),可求得.

(Ⅱ),

所以所求的線性回歸方程為.

(Ⅲ)利用(Ⅱ)中所求的線性回歸方程可得,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.

與銷售數(shù)據(jù)對(duì)比可知滿足的共有3個(gè)“好數(shù)據(jù)”:、.

又從6個(gè)銷售數(shù)據(jù)中任取2個(gè),共有=15種不同的取法,

設(shè)所求事件用表示 ,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的邊長(zhǎng)為,,交于點(diǎn).將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),

(I)求證:平面⊥平面;

(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求yfx)的最大值和最小值,并寫出相應(yīng)的x值;

2)將函數(shù)yfx)的圖象向右平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)ygx)的圖象,區(qū)間[a,b]abRab)滿足:ygx)在[a,b]上至少含有20個(gè)零點(diǎn),在所有滿足上述條件的[a,b]中,求ba的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2a–lnx,g(x)=,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).

(1)討論f(x) 的單調(diào)性;

(2)證明:當(dāng)x>1時(shí),g(x)>0;

(3)如果f(x)>g(x) 在區(qū)間(1,+∞)內(nèi)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面,且底面為邊長(zhǎng)為2的菱形,,.

(Ⅰ)記在平面內(nèi)的射影為(即平面),試用作圖的方法找出M點(diǎn)位置,并寫出的長(zhǎng)(要求寫出作圖過程,并保留作圖痕跡,不需證明過程和計(jì)算過程);

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

命題:中,若的逆命題為假命題;

②“是直線與圓相交的充分不必要條件;

命題:的逆否命題是

,則為真命題。

其中正確的說法個(gè)數(shù)為()

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇函數(shù),為常數(shù).

1)求的值

2)判斷函數(shù)上的單調(diào)性,并說明理由;

3)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的方程為,過點(diǎn)為常數(shù))作拋物線的兩條切線,切點(diǎn)分別為,.

(1)過焦點(diǎn)且在軸上截距為的直線與拋物線交于,兩點(diǎn),,兩點(diǎn)在軸上的射影分別為,,且,求拋物線的方程;

(2)設(shè)直線的斜率分別為,.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩所學(xué)校進(jìn)行同一門課程的考試,按照學(xué)生考試成績(jī)優(yōu)秀和不優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下列聯(lián)表:

班級(jí)與成績(jī)列聯(lián)表

優(yōu)秀

不優(yōu)秀

總計(jì)

甲隊(duì)

80

40

120

乙隊(duì)

240

200

240

合計(jì)

320

240

560

(1)能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為成績(jī)與學(xué)校有關(guān)系;

(2)采用分層抽樣的方法在兩所學(xué)校成績(jī)優(yōu)秀的320名學(xué)生中抽取16名同學(xué).現(xiàn)從這16名同學(xué)中隨機(jī)抽取3名運(yùn)同學(xué)作為成績(jī)優(yōu)秀學(xué)生代表介紹學(xué)習(xí)經(jīng)驗(yàn),記這3名同學(xué)來自甲學(xué)校的人數(shù)為,求的分布列與數(shù)學(xué)期望.附:

參考數(shù)據(jù):

,其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案