精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
a2x+1
3x-1
(a∈N)
,方程f(x)=-2x+7有兩個根x1,x2,且x1<1<x2<3.
(1)求自然數a的值及f(x)的解析式;
(2)記等差數列{an}和等差數列{bn}的前n項和分別為Sn和Tn,且
Sn
Tn
=f(n),(n∈N*)
,設g(n)=
an
bn
,求g(n)的解析式及g(n)的最大值;
(3)在(2)小題的條件下,若a1=10,寫出數列{an}和{bn}的通項,并探究在數列{an}和{bn}中是否存在相等的項?若有,求這些相等項從小到大排列所成數列{cn}的通項公式;若沒有,請說明理由.
分析:(1)由方程f(x)=-2x+76可以化簡為:x2+(a2-23)x+8=0,令h(x)=6x2+(a2-23)x+8,再結合二次函數的性質可得a=2,進而求出函數的解析式.
(2)由等差數列的性質可得:g(n)=
(2n-1)(a1+a2n-1)
(2n-1)(b1+b2n-1)
=
S2n-1
T2n-1
=f(2n-1)
,即可求出函數g(n)的表達式,進而利用函數的有關性質求出其最大值.
(3)
an
bn
=
8n-3
6n-4
,由
a1
b1
=
5
2
,a1=10?b1=4
,再利用(2)中的解析式與等差數列的性質可得兩個數列的通項公式,進而假設存在相等的項ak=bp,可得矛盾即可得到答案.
解答:解:(1)由
a2x+1
3x-1
=-2x+7
得:6x2+(a2-23)x+8=0;
令h(x)=6x2+(a2-23)x+8,由x1<1<x2<3得:
h(1)=a2-9<0
h(3)=3a2-7>0
?
7
3
a2<9
,
又a∈N,所以有:a=2;…(5分)
所以f(x)=
4x+1
3x-1
;      …(6分)
(2)g(n)=
an
bn
,并且結合等差數列的性質可得:
g(n)=
(2n-1)(a1+a2n-1)
(2n-1)(b1+b2n-1)
=
S2n-1
T2n-1
=f(2n-1)
,
所以g(n)=
8n-3
6n-4
=
4
3
+
7
6(3n-2)
;…(8分)
并且g(n)max=g(1)=
5
2
.…(12分)
(3)
an
bn
=
8n-3
6n-4
,由
a1
b1
=
5
2
,a1=10?b1=4
;          …(13分)
設數列{an}和數列{bn}的公差分別為d1,d2;
所以
a2
b2
=
10+d1
4+d2
=
13
8
a3
b3
=
10+2d1
4+2d2
=
21
14
?
d1=16
d2=12
?
an=10+(n-1)•16=16n-6
bn=4+(n-1)•12=12n-8
…(16分)
若存在相等的項ak=bp(k,p∈N*),即16k-6=12p-8?6p-8k=1①
①式左邊為偶數,右邊為奇數,不可能成立,
故不存在滿足條件的數列{cn}.…(18分)
點評:本題主要考查二次函數的有關性質與等差數列的有關性質,以及等差數列的通項公式、函數求最值等知識點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=a-
12x+1

(1)求證:不論a為何實數f(x)總是為增函數;
(2)確定a的值,使f(x)為奇函數;
(3)當f(x)為奇函數時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經過點Q(8,6).
(1)求a的值,并在直線坐標系中畫出函數f(x)的大致圖象;
(2)求函數f(t)-9的零點;
(3)設q(t)=f(t+1)-f(t)(t∈R),求函數q(t)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-
1
2x+1
,若f(x)為奇函數,則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
a(x-1)x2
,其中a>0.
(I)求函數f(x)的單調區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數a的值;
(III)設g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數,求a的值;
(3)考察f(x)在定義域上單調性的情況,并證明你的結論.

查看答案和解析>>

同步練習冊答案