如圖,在正方體ABCD-A1B1C1D1中,AA1=a,E,F(xiàn)分別是BC,DC的中點(diǎn).求異面直線AD1與EF所成角的大。
分析:通過平移直線作出異面直線AD1與EF所成的角,在三角形中即可求得.
解答:解:連接BC1、BD和DC1
在正方體ABCD-A1B1C1D1中,
由AB=D1C1,AB∥D1C1,可知AD1∥BC1
在△BCD中,E,F(xiàn)分別是BC,DC的中點(diǎn),所以,有EF∥BD,
所以∠DBC1就是異面直線AD1與EF所成角,
在正方體ABCD-A1B1C1D1中,BC1、BD和DC1是其三個(gè)面上的對(duì)角線,它們相等.
所以△DBC1是正三角形,∠DBC1=60°
故異面直線AD1與EF所成角的大小為60°.
點(diǎn)評(píng):本題考查異面直線所成的角及其求法,解決該類題目的基本思路是化空間角為平面角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結(jié)論,得到此三棱錐中的一個(gè)正確結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)P是上底面A1B1C1D1內(nèi)一動(dòng)點(diǎn),則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案