已知
cos(π-2α)
sin(α-
π
4
)
=-
2
2
,則cosα+sinα等于( 。
A、-
7
2
B、
7
2
C、
1
2
D、-
1
2
分析:首先根據(jù)誘導公式整理所給的分式,再利用二倍角的余弦公式,整理分子,然后分子和分母約分,得到結果.
解答:解:∵
cos(π-2α)
sin(α-
π
4
)
=-
2
2
,
cos2α
sin(α-
π
4
)
=
2
2

cos2α-sin2α
sinα-cosα
=
1
2

sinα+cosα=-
1
2

故選D.
點評:本題考查三角函數(shù)的化簡求值,本題解題的關鍵是利用誘導公式和二倍角公式進行整理,本題是一個基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知cos(
π
2
+φ)=
3
2
,且|φ|<
π
2
,則tanφ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值:
(1)已知cos(α-
β
2
)
=-
4
5
,sin(β-
α
2
)=
5
13
,且
π
2
<α<π,0<β<
π
2
,求cos
α+β
2
的值;
(2)已知tanα=4
3
,cos(α+β)=-
11
14
,α、β均為銳角,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(
π
2
+φ)=-
3
2
且|φ|<
π
2
,則tanφ
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(θ+
π2
)<0,cos(θ-π)>0
,則θ為第
象限角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(α-
β
2
)=-
3
3
,sin(
α
2
-β)=
4
2
9
,其中
π
2
<α<π,0<β<
π
2
.求cos
α+β
2
的值.

查看答案和解析>>

同步練習冊答案