16.若正數(shù)a,b滿足ab=a+b+3.
(1)求ab的取值范圍.
(2)求a+b的取值范圍.

分析 (1)正數(shù)a,b滿足ab=a+b+3,可得ab=a+b+3≥$2\sqrt{ab}$+3,解出即可得出.
(2)正數(shù)a,b滿足ab=a+b+3,可得a+b+3=ab≤$(\frac{a+b}{2})^{2}$,解出即可得出.

解答 解:(1)∵正數(shù)a,b滿足ab=a+b+3,
∴ab=a+b+3≥$2\sqrt{ab}$+3,即$(\sqrt{ab})^{2}$-2$\sqrt{ab}$-3≥0,
解得$\sqrt{ab}$≥3,即ab≥9,當(dāng)且僅當(dāng)a=b=3時取等號,∴ab∈[9,+∞).
(2)∵正數(shù)a,b滿足ab=a+b+3,∴a+b+3=ab≤$(\frac{a+b}{2})^{2}$,
即(a+b)2-4(a+b)-12≥0,解得a+b≥6,當(dāng)且僅當(dāng)a=b=3時取等號,
∴a+b∈[6,+∞).

點評 本題考查了基本不等式的性質(zhì)、一元二次不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某部隊為了在大閱兵中樹立軍隊的良好形象,決定從參訓(xùn)的12名男兵和18名女兵中挑選出正式閱兵人員,這30名軍人的身高如圖:單位:cm
若身高在175cm(含175cm)以上,定義為“高個子”,身高在175cm以下,定義為“非高個子”,且只有“女高個子”才能擔(dān)任“護(hù)旗手”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中選定5名軍人,分別抽“高個子”和“非高個子”各多少人?
(2)如果用分層抽樣的方法從“高個子”和“非高個子”中共選定了5名軍人,再從這5人中任選2人,那么至少有1人是“高個子”的概率是多少?
(3)如果從選定的3名“男高個子”和2名“女高個子”中任選2名軍人,求所選這2名軍人中恰有1人能擔(dān)任“護(hù)旗手”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.口袋中放有大小相等的2個紅球和1個白球,有放回地每次摸取1個球,定義數(shù)列{an}:若第n次摸到紅球,an=-1;若第n次摸到白球,an=1.如果Sn為數(shù)列{an}的前n項和,那么S7=3的概率為(  )
A.$C_7^5×{({\frac{1}{3}})^2}×{({\frac{2}{3}})^5}$B.$C_7^5×{({\frac{1}{3}})^2}×{({\frac{1}{3}})^5}$C.$C_7^3×{({\frac{1}{3}})^2}×{({\frac{2}{3}})^5}$D.$C_7^2×{({\frac{2}{3}})^2}×{({\frac{1}{3}})^5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=f($\frac{{x}^{2}}{1+{x}^{2}}$)的定義域為(0,2],則函數(shù)y=f(x+1)的定義域為(-1,-$\frac{1}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知△ABC的三個頂點分別為A(-3,0),B(2,1),C(-2,3),試求:
(1)邊AC所在直線的方程; 
(2)BC邊上的中線AD所在直線的方程;
(3)BC邊上的高AE所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知M(x0,y0)是雙曲線C:$\frac{x^2}{2}$-y2=1上的一點,F(xiàn)1,F(xiàn)2是C上的兩個焦點,若∠F1MF2為鈍角,則x0的取值范圍是-$\frac{2\sqrt{6}}{3}$<x0<$\frac{2\sqrt{6}}{3}$且x0≠$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=x(ex-e-x),若f(a+3)>f(2a),則a的范圍是-1<a<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個幾何體由多面體和旋轉(zhuǎn)體的整體或一部分組合而成,其三視圖如圖所示,則該幾何體的體積是(  )
A.π+1B.π+2C.2π+1D.$3π+5+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=x2-ax在(-∞,2]上遞減,在(2,+∞)上遞增,則a=4.

查看答案和解析>>

同步練習(xí)冊答案