4.已知函數(shù)y=f($\frac{{x}^{2}}{1+{x}^{2}}$)的定義域?yàn)椋?,2],則函數(shù)y=f(x+1)的定義域?yàn)椋?1,-$\frac{1}{5}$].

分析 由函數(shù)y=f($\frac{{x}^{2}}{1+{x}^{2}}$)的定義域?yàn)椋?,2],可求$\frac{{x}^{2}}{1+{x}^{2}}$的值域,即函數(shù)f(x)的定義域,再由x+1∈(-1,-$\frac{1}{5}$],即可求得y=f(x+1)的定義域.

解答 解:函數(shù)y=f($\frac{{x}^{2}}{1+{x}^{2}}$)的定義域?yàn)椋?,2],則$\frac{{x}^{2}}{1+{x}^{2}}$=1-$\frac{1}{1+{x}^{2}}$∈(0,$\frac{4}{5}$],
即函數(shù)f(x)的定義域?yàn)椋?,$\frac{4}{5}$],
令x+1∈(0,$\frac{4}{5}$],
解得x∈(-1,-$\frac{1}{5}$].
則函數(shù)y=f(x+1)的定義域?yàn)椋?1,-$\frac{1}{5}$].
故答案為:(-1,-$\frac{1}{5}$].

點(diǎn)評(píng) 本題考查抽象函數(shù)定義域的求法,屬基礎(chǔ)題,注意理解函數(shù)f(x)的定義域與函數(shù)f[g(x)]定義域的區(qū)別.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.命題“若a>b,則2a>2b-1”的逆命題是若2a>2b-1,則a>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在-20到40之間插入8個(gè)數(shù),使這10個(gè)數(shù)成等差數(shù)列,則這10個(gè)數(shù)的和為( 。
A.200B.100C.90D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x2-x-1,則函數(shù)f(x)的解析式為f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-1,x<0}\\{0,x=0}\\{-{x}^{2}-x+1,x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}x-1,x≥0\\{x^2},x<0\end{array}$,則f(f(-2))的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合M={x|-2≤x≤2},N={x|y=$\sqrt{1-x}$},那么M∩N=(  )
A.[-2,1]B.(-2,1)C.(-2,1]D.{-2,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.若正數(shù)a,b滿足ab=a+b+3.
(1)求ab的取值范圍.
(2)求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.從{$\frac{1}{3}$,$\frac{1}{2}$,2,3}中隨機(jī)抽取一個(gè)數(shù)記為a,從{-2,-1,1,2}中隨機(jī)抽取一個(gè)數(shù)記為b,則函數(shù)y=ax+b的圖象經(jīng)過(guò)第三象限的概率是$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在一次連環(huán)交通事故中,只有一個(gè)人需要負(fù)主要責(zé)任,但在警察詢問(wèn)時(shí),甲說(shuō):“主要責(zé)任在乙”;乙說(shuō):“丙應(yīng)負(fù)主要責(zé)任”;丙說(shuō)“甲說(shuō)的對(duì)”;丁說(shuō):“反正我沒(méi)有責(zé)任”.四人中只有一個(gè)人說(shuō)的是真話,則該事故中需要負(fù)主要責(zé)任的人是甲.

查看答案和解析>>

同步練習(xí)冊(cè)答案